大气科学是研究大气的各种现象(包括
人类活动对它的影响),这些现象的演变规律,以及如何利用这些规律为人类服务的一门学科。大气科学是
地球科学的一个组成部分。大气科学的分支学科主要有
大气探测、
气候学、
气象学、
动力气象学、大气物理学、
大气化学、
人工影响天气、应用气象学等。李正禾编写的《中国气象学简史》中认为气象学是自然科学的发生和发展的开始, 自然科学与应用技术推进了大气科学理论的科学化和系统化,逐渐出现了天气学、大气动力学、气候学诸多学科。
基本介绍
大气科学是研究大气的各种现象(包括人类活动对它的影响)及其演变规律,以及如何利用这些规律为人类服务的一门学科。大气科学是
地球科学的一个组成部分。它的研究对象主要是覆盖整个地球的
大气圈。此外,还研究
太阳系其他行星的大气。大气圈,特别是地球表面的
低层大气,以及和它相关的
水圈、
岩石圈、
生物圈是人类赖以生存的主要环境。
大气的各种现象及其变化过程,既可带来雨泽和温暖,造福人类;也可造成酷暑严寒,以至旱涝
风雹等灾害,直接影响人类的生产和安全。人类在生产和生活的过程中,也不断地影响着
自然环境(包括大气)。如何认识大气中的各种现象,如何及时而又正确地预报未来的天气、气候,并对不利的天气、
气候条件进行人工调节和防御,是人类自古以来一直不断探索的领域。随着科学技术和生产的迅速发展,大气科学在国民经济和社会生活中的巨大作用日益显著,其研究领域已经越出通常所称的气象学的范围。
就业方向:主要就业于各级气象部门从事天气预报工作;海军、空军气象工作;学校和
科研机构;各级政府防雹救灾部门等。
研究对象
大气科学研究大气的结构、组成、
物理现象、
化学反应、运动规律,以及如何运用这些规律为人类服务的一门学科。它是地球科学的一个组成部分。其研究对象主要是覆盖地球的大气圈,以及太阳系其他行星的大气。
大气简介
覆盖整个地球的大气,质量约5.3×10^21 克,约占地球总质量的百万分之一。由于
地心引力的作用,
大气质量的90%聚集在离地表15公里高度以下的
大气层内,99.9%在48公里以内。2000公里高度以上,大气极其稀薄,逐渐向
星际空间过渡,无明显上界。大气本身的
可压缩性、
太阳辐射、地球的形状和它的重力、地球的公转和自转、地球表面的海陆分布和地形起伏、地球的演化和地球
生态系统等是造成地球大气特定组分、特定结构和特定
运动状态的主要
自然条件。人类活动及其对
生态因素所起的作用,是影响大气组分、
大气结构和
大气运动的人为条件。
地球大气的组分以氮、氧、氩为主,它们占大气总体积的 99.96%。其他气体含量甚微,有
二氧化碳、氪、氖、氦、甲烷、氢、
一氧化碳、氙、臭氧、氡、水汽等。大气中还悬浮着水滴、冰晶、尘埃、孢子、
花粉等液态、固态微粒。太阳系的九大行星,都存在大气 (见
行星大气)。地球大气中的氧气是人类赖以生存的物质基础,氧气的出现及其含量的变化,同地球的形成过程和生物的演化过程密切相关(见
地球大气演化)。大气中的水汽来自江河、湖泊和海洋表面的蒸发,植物的散发,以及其他含水物质的蒸发。在夏季
湿热处(如高温的洋面或森林),大气中水汽含量的体积比可达4%,而冬季干寒处(如极地),则低于0.01%。水汽随着大气温度发生相变,成云致雨,成为淡水的主要资源。水的相变和水文循环过程不仅把大气圈同水圈、岩石圈、生物圈紧密地联系在一起,而且对
大气运动的
能量转换和变化有重要影响(见
大气环流的能量平衡和转换)。大气中的
二氧化碳含量受植物的
光合作用、动物的
呼吸作用、含碳物质的燃烧以及海水对二氧化碳的
吸收作用所影响,在工业发展、
化石燃料(如煤、石油、天然气)燃量增加、森林覆盖面积减少的情况下,已观测到二氧化碳含量与年俱增。大气中本来没有或极少存在的如甲烷、
一氧化二氮等气体,由于人类活动的影响,它们的含量也迅速增加。这些有
温室效应的气体含量的变化对大气温度的重要影响,已成为研究
现代气候变化的一个前沿课题。大气中臭氧的含量很少,即使在离地表20~30公里的浓度最大处,其含量也不到这层大气的十万分之一。然而大气
臭氧层能够大量吸收太阳紫外辐射中对生命有害的部分,起着对人类十分重要的保护作用。另外,大气臭氧层的存在,对
平流层大气的温度也有重要作用。由于人类活动对高空
光化学过程的影响会引起臭氧含量的变化,人类活动对臭氧含量影响的研究,已成为医学界和气象学界共同关注的问题。
地球大气的密度、温度、压力、组分和电磁特性等都随高度而变化,具有多层次的结构特征。大气的密度和压力一般随高度按
指数律递减;温度、组分和电磁特性随高度的变化不同,按各自的变化特征可分为若干层次。
大气运动
地球大气的运动非常复杂。地球的自转和公转运动以及
地球自转轴的方向产生了地球上的
昼夜交替、四季变化和温度自
赤道向两极递减的规律。由于海陆分布和地貌等的
不均匀性,地表的温度并不完全按纬圈带分布,而呈现出非带状的不
均匀分布。大气的温度、压力和密度之间有密切的关系。大气
压力分布(即
气压场)的不均匀会导致大气的运动,大气的运动又会引起气压场的重新调整。大气的水平辐合运动和辐散运动会引起大气在铅直方向的
上升运动和下沉运动,大气的
铅直运动也会影响大气的
水平运动。大气通过
机械运动、
热运动等多种
运动形式进行
水平方向和铅直方向的物质和能量的传输和转换。整个大气圈通过各种机制相互紧密地联系在一起,形成了
空间尺度小至几米以下、大至几千公里甚至上万公里,
时间尺度短至几秒、长至数十天或更长时间的多种大气运动系统。在影响大气运动的因素中,人为的因素在变化着(如工农业生产引起大气中有温室效应的气体增加,大面积
森林砍伐等),自然的因素也在变化着(如
火山爆发等引起
辐射能的变化,地球自转
轴方向的变化等)。有些变化是有规律的,有些变化是无规则的。大气的运动也就呈现出既有
规律性又有
随机性的特征。
大气分类
按温度随高度的变化
地球大气按温度随高度的变化,由地表向上,依次分为对流层、平流层、中层和
热层。对流层紧邻地表,其中温度随高度增加而降低,平均每升高1公里约减少6.5℃,至
对流层顶温度降到
极小值。对流层中的对流运动显著,是热量铅直输送的主要
控制因子,云和降水主要发生在这一层。对流层顶的高度在
赤道地区约18公里,
中纬度地区约12公里,
极地地区约8公里。平流层位于对流层之上,
平流层顶离地表约50公里。平流层中的
臭氧层吸收太阳紫外辐射,是使这层大气温度随高度增加而上升的主要因子。这层
大气温度层结非常稳定,其中的热量铅直输送以辐射传输为主。中层位于平流层之上,中层顶离地表约85公里,层内温度随高度增加而下降。热层位于中层之上,
热层顶离地表约500公里。这层大气由于吸收
太阳紫外辐射,温度随高度增加而上升。热层顶以上为
外逸层,那里大气已极稀薄,每立方厘米不到10个原子(海平面处每立方厘米约10个原子)。
按组分状况
地球大气按组分状况可分为
匀和层和
非匀和层。离地表约85公里高度以下为匀和层,层内的大气组分比例相同,
平均分子量为常数。约110公里高度以上为非匀和层,层内大气组分按
重力分离后,轻的在上,重的在下,平均分子量随高度增加而减小。离地表 85~110公里为匀和层到非匀和层的过渡层。
按电磁特性
地球大气按电磁特性可分为
中性层、
电离层和
磁层。由地表向上到 60公里高度为中性层。离地表 60公里到500~1000公里高度为电离层。离地表500~1000公里以上为磁层。电离层能反射
无线电波,对电波通信极为重要。磁层是地球大气的最外层,
磁层顶是
太阳风动能密度和地
磁场能密度相平衡的曲面。
发展前景
大气科学是一门古老的学科。有关天气、气候知识起源于长久的生产劳动和社会生活的经验之中。早在渔猎时代和农业时代,人们就逐渐积累起有关天气、气候变化的知识。中国在公元前 2世纪见于《
淮南子·天文训》和《逸周书·时训解》的二十四节气和七十二候,就是从生产和生活实践中总结出来的,它又被用来指导农事活动。后来的工农业生产活动,军事活动,航海、航空、航天活动,以及对海洋、冰川、高原、空间等考察的发展,都为大气科学不断提出新的课题,推动着大气科学的发展。
17世纪以前,人们对大气以及大气中各种现象的认识是直觉的、经验性的。17~18世纪,由于物理学和化学的发展,温度、气压、风和湿度等测量仪器的陆续发明,氮、氧等元素的相继发现,为人类定量地认识大气的组成、大气的运动等创造了条件。于是,大气科学研究开始由单纯定性的描述进入了可以定量分析的阶段。这是大气科学发展进程中的一次飞跃。1820年,在气压、温度、湿度、风等
气象要素的测定和气象观测站网逐步建立的条件下,H.W.布兰德斯绘制了历史上第一张天气图,开创了近代
天气分析和
天气预报方法,为大气科学向理论研究发展开辟了途径。这是大气科学发展史上的又一次飞跃。1835年科里奥利力的概念和1857年C.H.D.白贝罗提出的风和气压的关系,成为地球
大气动力学和天气分析的基石。1920年前后,气象学家J.皮耶克
尼斯、H.索尔贝格和T.H.P.伯杰龙等提出的锋面、气旋和气团学说,为天气分析和预报1~2天以后的天气变化奠定了理论基础。1783年,法国J.A.C.查理制成了携带探测气象要素仪器的氢气气球。20世纪30年代
无线电探空仪开始普遍使用,这就能够了解大气的铅直结构,真正三度空间的大气科学研究从此开始。根据探空资料绘制的
高空天气图,发现了
大气长波。1939年气象学家C.-G.罗斯比提出了长波动力学,并由此引出了
位势涡度理论(见
大气动力方程)。这不仅使有理论依据的天气预报期限延伸到3~4天,而且为后来的
数值天气预报和
大气环流的数值模拟开辟了道路。1946年I.朗缪尔、V.J.谢弗和B.冯内古特的“播云”试验,探明了在
过冷云中播撒固体二氧化碳或
碘化银,可以使云中的过冷水滴冰晶化,增加云中的冰晶数目,促进降水,从此进入了人工影响天气的试验阶段。
大气科学在很长的发展过程中,先是以气候学、天气学、
大气热力学和动力学问题以及大气中的声、光、电等物理现象为主要研究内容,传统称为气象学。随着现代科学技术在气象学中的应用,其研究范畴日益扩展。50年代以前,大气科学虽然取得了很大的进展,但因受海洋、沙漠等人烟稀少地区缺乏资料的限制以及计算上的困难,还不能摆脱定性或半定性的研究状态。50年代以后,各种新技术特别是电子计算机和气象卫星的采用,大气科学有了突飞猛进的发展,20世纪60年代以后,大气科学术语的应用日益广泛,大大扩充了传统气象学的研究内容。由于各种新技术特别是电子计算机和气象卫星的采用,大气科学有了突飞猛进的发展,主要表现为以下两个方面:
①不断采用新的探测技术,使大气科学进入了宏观越宏、微观越微的
新阶段。由于采用气象卫星、
气象火箭和激光、微波、
红外等遥感探测手段,对大气的观测能力增强了,观测空间扩展了。气象卫星在大气层外探测大气,不仅加大了观测范围,而且极大地丰富了观测内容,如广阔洋面的温度、云的
微观结构、
大气辐射平衡等。气象卫星已成为现代大气科学发展的支柱之一。
②电子计算机的使用,使大气
科学研究进入了定量
实验研究的新阶段。大气中各类过程的相互影响,以及
大气现象中的跃变形式(如
飑线),都存在非常复杂的非线性问题。大型高速电子计算机的问世,为解
非线性方程提供了条件。要了解几星期、几个月甚至一年以后的大气可能出现的状态,也需依靠高速计算机获取和处理全球资料,以全球模式进行天气预报和
气候预测。电子计算机是现代大气科学发展的另一个支柱。
大气科学的迅猛发展正方兴未艾。随着
世界气候计划及其他
专项计划的执行,在常规观测系统的基础上,将更多地运用气象卫星、
海洋观测卫星、
多普勒雷达和各种特殊装备的飞机等多种探测手段,以及新的大气化学观测和分析方法,进行各种
特殊项目的观测,如海面高度、
太阳常数、云和辐射的反馈、近海面风力、
土壤湿度、
碳循环等。通过以上观测和计划的执行,将对气候变化和
中小尺度天气系统的
精细结构及其发生发展原因有更加广泛和深入的研究,研究成果将不断提高对灾害性天气预报的水平,不断预示人类活动对气候影响的可能后果,以防患于未然。如由人类活动造成大气中甲烷和一氧化二氮等微量
气体含量的增加而引起的
大气温室效应,据估计,可能很快达大气中二氧化碳所引起的温室效应的一半。这些温室效应的总效果可能导致地球气候发生很大变化。对温室效应气体和大气污染等问题的深入研究,使得过去有一定忽略的大气化学的重要性越来越显著,大气化学将会更加迅速地发展。总之,人类生产和生活的发展,将不断提出新的问题和要求,推动大气科学
新理论和新分支的发展。大气科学新的发展,必将不断提高它为生产和生活服务的能力,如提高天气和气候预报的
准确率、为开发利用气象资源和制定
经济政策提供更加可靠的科学依据等,其
经济效益和
社会效益将不可估量。
总之,人类生产和生活的发展,将不断向大气科学提出新的问题和要求,推动大气科学新理论和新分支的发展。大气科学的新发展,必将不断提高它为生产和生活服务的能力,如提高天气和气候预报的准确率,为开发利用气候资源、制定
发展战略和经济政策提供更加可靠的科学依据。
研究特点
不能仅限于大气圈
在
地球表层,除大气圈以外,还存在着水圈、冰雪圈、
岩石圈和生物圈,这些圈层组成一个综合系统。大气圈中发生的各种变化都受其他圈层的影响;反之,大气圈也影响着其他圈层的变化。研究大气运动的能源,大气中的
物质循环、能量转换和变化过程,大气环流及天气、气候的分布和变化,都必须考虑大气圈同水圈、冰雪圈、岩石圈、生物圈之间的相互影响和相互作用。如:大气运动的根本能源是太阳辐射。但大气直接吸收的
太阳辐射能仅占到达
大气上界辐射能的19%,大部分太阳辐射能(约51%)是被地表吸收后,再通过感热
通量、
潜热通量和
辐射通量方式供给大气的。这些通量受
近地层大气状态、地表的状态(如海洋、陆地、植被、冰雪)及其热力特性等所控制。又如:大气的组分及其物理和化学性质,除受大气内部物理、化学过程的影响外,还受水圈、冰雪圈、岩石圈和生物圈的影响。海洋通过水的相变、
水汽通量和
感热通量过程,植被通过光合作用和散发过程,土壤通过水汽通量和感热通量过程等影响大气的温度、水汽和二氧化碳等的含量。
火山爆发和人类活动等影响大气中气
溶胶含量、大气成分和辐射过程等。再如:地形起伏和植被状况对气流的
摩擦作用,影响着地表和大气之间的
动量交换(见
大气角动量平衡);大地形对气流的强迫
绕流和强迫爬升及下滑作用,影响着大气的环流特征;海陆分布的不均匀性,影响着大气环流和天气、气候的非带状分布和南北半球的非对称分布。
大自然是实验基地
大气圈不是孤立的。在
空间和时间上具有宽广尺度谱的各种
大气现象也不是孤立的。它们种类繁多,相互叠加又相互影响。即使同一类现象,其结构也不尽相同。影响这些大气现象的因素非常复杂,人类至今还很难在实验室内用
人工控制的方法对它们进行完整的实验和研究。只能以大自然为实验室,组织从
局地到全球的
气象观测网,运用多种观测手段(如
气象卫星、
气象雷达、飞机等)对大气现象进行长期的连续的观测,特别是定量的观测,以获取资料;对有关气候现象还需搜集地质考查、考古发掘和历史文献等资料。大气科学家们通过对大量资料的分析和综合,提炼出量与量之间的定性的或定量的关系,归纳出典型现象的模式特征,如锋面、气旋、大气
长波等,在模式的基础上运用已知的物理学和化学的基本原理以及
数学工具和计算技术进行理论上的演绎和模拟,导出新的结论。理论模式是否合理,还需回到大自然的实验室中进行检验,有些理论模式还有待于新的观测资料加以证实。经
实践检验的理论才可指导实践(如指导天气预报等)。大气科学正是通过大自然这个实验室,遵循观测(实践)—理论—观测(实践)这个基本法则不断发展,不断为社会的生产和人类的生活服务的。
全球大气在不停地运动着,而且是一个整体,一个地区的大气运动受着其他地区大气运动的影响,不同尺度的大气运动又相互作用着,其变化之快、变化范围之广、变化形式之多,是自然界突出的。为掌握
大气运动变化快、范围广、形式多的特征,就必须对大气进行连续的、高频率的、全球性的观测。为掌握全球大气的各种信息,必须在站网布局、观测项目、资料处理规范、
信息传输等方面作出统一规划和求得协调。全球数以万计的为天气预报进行观测的
气象站,要在相同的时间、用接近相同的仪器和观测方法,在全球各地进行
同步观测;由气象卫星、气象雷达等探测手段观测的大量资料,凡用于天气预报业务的资料还要作同步处理。这些资料都要在观测完毕后的短短数十分钟内迅速集中到世界
气象中心和各国的气象中心。再加上为数更多的
水文气象站的观测资料。资料的范围之大、数量之多、传递之快是惊人的,这是自然科学中的奇观。这一切只有通过国际间的密切合作才能实现。大气科学研究中的这种高度分散(观测站点)、高度集中(资料迅速集中)、高度协调(观测站址、观测仪器和方法)、高度合作(国际间合作)的特点,是其他学科无法比拟的。
研究意义
大气科学的研究对象──地球大气,无论它的组分,它的结构,还是它的运动,都存在着
确定性和
不确定性两个方面。这正是大气科学研究复杂性的一面。天气变化、气候异常以及大气质量变化同人类的生活和生产活动休戚相关,正确的天气预报、气候预测以及改善大气污染情况对人们具有极大的迫切性,这正是大气科学研究为人类紧迫所需的应用性的一面。这种艰巨而有意义的科学事业不断吸引着人们去探索地球大气的奥秘。
开设院校
主干课程
综述
大气科学的分支学科主要有大气探测学、
气候学、
天气学、
动力气象学、
大气物理学、
大气化学、人工影响天气、应用气象学等。
大气科学的各个分支学科彼此不是孤立的,如天气学和气候学与动力气象学相结合,产生了
天气动力学和
物理动力气候学。探测手段的不断革新和
痕量化学分析技术的发展,推动了对大气的
物理性质和
化学性质的分析研究,促进了大气化学的发展。尤其是大气中二氧化碳和
甲烷等微量气体对
气候影响的日益显著,以及大气污染和
酸雨问题的出现,不仅使人们更加认识到大气化学在大气科学中的重要性,而且随着研究的深入,更认识到大气化学过程和
大气物理过程的相互作用,从而促进了这两个分支学科的相互结合。
气象卫星探测与
天气分析相结合产生了
卫星气象学,
气象雷达探测与
云和降水物理学相结合产生了
雷达气象学。大气科学学科分支又分又合的过程,反映了大气科学的不断深入发展。
大气科学在很长的历史发展过程中,先是以气候学、天气学、大气的
热力学和动力学问题以及大气中的
物理现象(如电象、光象、声象)和比较一般的化学现象等方面为主要研究内容,传统称之为“
气象学”(meteor-ology,此词源于
希腊文meteoros和logos,意为“上空的”和“推理”)。随着
现代科学技术在气象学中的应用,其研究范畴日益扩展,因而从20世纪60年代以来,“大气科学”术语的应用日益广泛,它大大扩充了传统气象学的研究内容。由于人类越来越认识到
大气圈与
水圈、
冰雪圈、
岩石圈和
生物圈之间相互作用和相互影响的重要性,要了解大气变化过程就不能不深入到其他圈层变化过程的研究。因此,大气科学的研究内容越来越广泛,与其他学科之间的相互渗透也越来越深入。
系统地研究
地球大气的成分,结构和动力过程的科学。大气科学传统上分为气象学、气候学和
高层大气物理学3个领域。气象学主要研究
对流层和低
平流层每日甚至每小时的天气变化。气候学是对
大气层某一区域长期(1个月至数百万年)的天气状况的
统计描述。
高层大气物理学主要研究高层大气的物理状态及
支配过程,高层大气是指低平流层以上的大气区域。
大气探测
是一门研究探测地球大气中各种现象的方法和手段的学科。按探测范围和探测手段划分,
大气探测有
地面气象观测、
高空气象观测、
大气遥感、气象雷达、气象卫星等次一层分支。探测手段的飞跃往往带来以往难以预计的重大发现,在大气科学的发展进程中,大气探测起了十分重要的作用。
气候学
是一门研究气候的特征、形成和演变以及气候同
人类活动相互关系的学科。研究内容主要包括气候特征、
气候分类、
气候区划、气候成因、气候变化、气候与人类活动的关系、
气候预报和
应用气候等。20世纪70年代以来,全世界发生几次
气候异常,不少地区
粮食产量大幅度下降,引起世人对气候的严重关注。
工业生产引起大气中二氧化碳和其他有
温室效应的气体(如甲烷、
一氧化二氮等)含量逐年增加,若干年后它们对地球气候将发生什么影响,也是非常令人关切的问题。电子
计算机的采用,促进了对气候变化物理因子和
气候模拟的研究,
气候预测已不再是虚无缥缈的难题,而已成为一个具有战略意义的课题了。
气象学
是一门研究大气中各种
天气现象发生发展的规律以及如何应用这些规律来制作天气预报的学科。研究内容主要包括天气现象、
天气系统、
天气分析和天气预报等。气候学和气象学研究的成果,不但为大气科学提供丰富的研究课题,而且还直接为
国民经济服务。
动力气象学
是一门应用物理学和流体力学定律及
数学方法,研究大气运动的动力和
热力过程及其相互关系的学科。研究内容主要包括
大气热力学、大气动力学、
大气环流、
大气湍流、数值天气预报和数值模拟等。动力气象学的发展对更深刻地认识
大气运动的机理、掌握天气和气候变化的规律有十分重要的作用,它是大气科学的理论
基础学科。
大气物理学
是一门研究大气的
物理现象、
物理过程及其演变规律的学科。研究内容主要包括
云和降水物理学、
大气光学、
大气电学、
大气声学、
大气辐射学等。大气物理学也是大气科学中的理论基础学科。50年代以后,也有人把动力气象学包括在内都称为大气物理学。
大气化学
是一门研究
大气组成和大气化学过程的学科。研究内容主要包括
大气微量气体及其循环、
大气气溶胶、
大气放射性物质和
降水化学等。
大气化学是大气科学中最活跃的分支。它涉及
大气成分的性质和变化,源和汇,化学循环以及发生在大气中、大气与陆地及海洋之间的
化学过程。大气化学不断与其他学科领域进一步互相渗透融合,日益成为全人类社会迫切关注的关键学科领域,它所揭示的观测事实和研究成果已经成为各国可持续发展战略和气候与
环境变化国际公约谈判的基础。
应用气象学
是将气象学的原理、方法和成果应用于农业、水文、航海、航空、军事、医疗等方面,同各个专业学科相结合而形成的边缘性学科,也是
充分开发利用
气候资源的重要领域。
发展概略
大气科学是一门古老的学科。有关天气、气候知识起源于长久的
生产劳动和
社会生活的经验之中。早在渔猎时代和农业时代,人们就逐渐积累起有关天气、气候变化的知识。中国在公元前 2世纪见于《
淮南子·天文训》和《逸周书·时训解》的
二十四节气和
七十二候,就是从生产和生活实践中总结出来的,它又被用来指导农事活动。后来的工农业
生产活动,军事活动,航海、航空、航天活动,以及对海洋、冰川、高原、空间等考察的发展,都为大气科学不断提出新的课题,推动着大气科学的发展。李正禾编写的《中国气象学简史》中认为,在步入近代工业革命之后,自然科学与应用技术推进了大气科学理论的科学化和系统化,逐渐出来了天气学、大气动力学、气候学诸多学科。中国近代在工业文明的冲击下,留洋海外的气象学家和天文学家在中央研究院的支持下,在艰难困苦的环境下对气象学进行探索,并建立了中国的气象学体系,并为后世气象事业打下基础。
17世纪以前,人们对大气以及大气中各种现象的认识是直觉的、经验性的。17~18世纪,由于物理学和化学的发展,温度、气压、风和湿度等测量仪器的陆续发明,氮、氧等元素的相继发现,为人类定量地认识大气的组成、大气的运动等创造了条件。于是,大气科学研究开始由单纯定性的描述进入了可以定量分析的阶段。这是大气科学发展进程中的一次飞跃。1820年,在气压、温度、湿度、风等
气象要素的测定和气象观测站网逐步建立的条件下,H.W.布兰德斯绘制了历史上第一张
天气图,开创了近代
天气分析和
天气预报方法,为大气科学向理论研究发展开辟了途径。这是大气科学发展史上的又一次飞跃。1835年
科里奥利力的概念和1857年C.H.D.
白贝罗提出的风和气压的关系,成为地球
大气动力学和天气分析的基石。1920年前后,气象学家J.皮耶克尼斯、H.索尔贝格和T.H.P.
伯杰龙等提出的
锋面、气旋和气团学说,为天气分析和预报1~2天以后的天气变化奠定了理论基础。1783年,法国J.A.C.
查理制成了携带探测气象要素仪器的氢气气球。20世纪30年代无线电
探空仪开始普遍使用,这就能够了解大气的铅直结构,真正
三度空间的大气科学研究从此开始。根据探空资料绘制的
高空天气图,发现了
大气长波。1939年气象学家C.-G.罗斯比提出了
长波动力学,并由此引出了
位势涡度理论(见
大气动力方程)。这不仅使有理论依据的天气预报期限延伸到3~4天,而且为后来的
数值天气预报和
大气环流的
数值模拟开辟了道路。1946年I.朗缪尔、V.J.谢弗和B.冯内古特的“播云”试验,探明了在
过冷云中播撒固体
二氧化碳或
碘化银,可以使云中的
过冷水滴冰晶化,增加云中的冰晶数目,促进降水,从此进入了
人工影响天气的试验阶段。
学科关系
与其他学科的关系
大气科学依据物理学和化学的基本原理,运用各种技术手段和数学工具,研究大气的物理和化学特性、大气运动的各种能量及其
转换过程、各种天气气候现象及其演变过程、天气以及其他某些现象的预报方法、影响某些
天气过程的
技术措施、大气现象各种信息的观测和获取以及传递的方法和手段等。和其他学科一样,大气科学是同许多学科相互渗透、相互借鉴的。诸如:研究
大气运动,需同流体力学、
热力学、数学密切合作;研究太阳辐射以及太阳扰动在大气中引起的各种机制,需同高层大气物理学、
太阳物理学和
空间物理学密切合作;研究
水分循环、海洋和大气的相互作用,需同
水文科学、
海洋科学密切合作;研究
地球大气的演化、地球气候的演变,需同
地球化学、地质学、
冰川学、海洋科学、生物学和
生态学密切合作;研究大气化学、大气污染,需同化学、物理学、生物学和生态学密切合作;研究大气问题的
数值模拟、数值天气预报等,需同
计算数学等密切合作;研究
大气探测的手段和方法,需同有关的
技术科学密切合作;在大气探测、天气预报等自动化的进程中,大气科学还不断同
信息理论、系统工程等科学技术领域密切合作。在相互合作和相互渗透的过程中,大气科学不断汲取其他学科的养料;大气科学特定的要求又不断为其他学科开辟新的
研究前沿,不断丰富着其他学科的内容。
Atmospheric and Climate Sciences
ACS aims to rapidly publish original scientific papers in all the fields of applied and/or climate atmospheric science. It covers the latest achievements and developments in the applied climate and atmospheric sciences, including but not limited to the following
scopes as well as the theoretical and practical aspects of these disciplines:
ACS的目的是快速发布原始科学论文,在所有领域的应用和/或气候大气科学,资料由美国
科研出版社编辑出版。它涵盖了最新成果和发展的气候和大气科学,
包括但不限于下列范围以及这些学科的理论和实践方面:
Air chemistry and the boundary layer, clouds and weather modification
Air quality, atmosphere & health
Applied meteorology
Atmospheric acoustics, electricity, optics,
physics, radiation and sounding
Atmospheric and oceanic physics
Atmospheric and solar-terrestrial physics
Atmospheric chemistry
Aviation climatology
Biometeorology
Building climatology and forestry climatology
Climate change and broadcast meteorology
Climate dynamics and variability
Climate policy
Clouds and precipitation physics
Cosmical meteorology
Dendroclimatology
Dynamics of atmospheres and ocean
Hydrology, oceans and atmosphere
Hydrometeorology
Marine meteorology and meteorology-associated geophysics
Medical meteorology and medical climatology
Meteorological, climatological and atmospheric environmental issues
Navigation climatology
Polar meteorology
Radar meteorology and radio meteorology
Remote sensing
Satellite meteorology and
synoptic meteorology
Theoretical and applied climatology
Tropical meteorology
Weather systems, numerical weather prediction
科研单位
高校
南京大学
中国地质大学(武汉)
中国地质大学(北京)
中国农业大学
研究所
中国科学院地球与行星科学学院
大气科学学科高校排名
教育部学位中心授权发布
2012年学科评估结果,其中大气科学,本
一级学科中,全国具有“博士一级”授权的高校共7所 ,本次有6所参评;还有部分具有“博士二级”授权和硕士授权的高校参加了评估; 参评高校共计8所。 注:以下相同得分按学校代码
顺序排列,以下是在大气科学领域排名前10名的高校。
基础课程:
高等数学、概率统计、
线性代数、普通物理学、
数学物理方程、流体力学、C语言程序设计、
FORTRAN、地球科学概论。
专业课程:大气科学基础、气候学、气象学原理、动力气象学、大气探测学、雷达气象学、卫星气象学、
中尺度气象学、数值天气预报、
热带天气学、计算方法、统计分析与预报、
数据采集技术、大气化学、环境气象学、
边界层气象学、天气分析与预报、
污染气象学、应用气象学。
就业前景
主要从事大气物理、
大气环境、大气探测、气象学、气候学、应用气象及相关学科的科研、教学、科技开发及相关管理工作。