基准面,是指用来准确定义三维地球形状的一组参数和控制点。当一个旋转椭球体的形状与地球相近时,基准面用于定义旋转椭球体相对于地心的位置。基准面给出了测量地球表面上位置的参考框架。它定义了
经线和
纬线的原点及方向。
基准定义
当一个
旋转椭球体的形状与地球相近时,基准面用于定义旋转椭球体相对于地心的位置。基准面给出了测量地球表面上位置的参考框架。它定义了
经线和
纬线的原点及方向。
基准理论
外营力以
侵蚀为主体,地表受外营力作用时,其向下侵蚀有一最低之限度,此一限度,就是
侵蚀基准面,亦称基准面(Base Level)。换言之,基准面就是地表向下侵蚀的终极面,以
河川为例,当河床低于此一终极面时,河流就不能再向下侵蚀。
所谓终极基准面(Ultimate Base Level)或永久基准面,是指海水面(Sea Level)而言,事实上海水面并非永久不变的,当地壳变动或冰川后退时,常使海陆之相对位置发生变迁。至于湖面、坚岩层及水库等,均为临时基准面(Temporary Base Level),或称局部基准面。由于侵蚀营力性质不同,其基准面亦随之而异,例如海蚀以波浪作用向下所能到达之波浪基准(Wave Base)为其基准面,风蚀与
溶蚀以地下水面为其基准面,冰河侵蚀以雪线为其基准面。
如果陆地上升,基准面即随之下降;反之,则会相对地上升。基准面下降常导致
侵蚀作用加速进行;基准面上升,则产生
沉积作用。
测量学上所说之基准面,是指
平均海水面而言,平均海水面是测量陆地
高程与海洋深度之起算点,须由特设之
验潮站经过多年之观测始可采用。就中国言,中国大陆地区之高程起算点为浙江坎门平均海水面;以零公尺起算;台湾省与
澎湖群岛之高程起算点则为基隆与马公平均海水面,亦以零公尺起算。上述地区,测量海洋深度,亦复如此。
沉积基准面相对于地表会产生波状升降,在此过程中伴随着
可容空间的变化。一个
基准面旋回由一个上升半旋回和随后的一个下降半旋回组成。基准面上升,向陆方向有新增可容空间产生,当基准面下降时,剩余可容空间向盆收缩。在一个基准面旋回变化过程中(可理解为时间域)保存下来的沉积地层为一个成因地层单元,即成因层序,其以时间面为界面,因而为一个时间地层单元,也就是说一个基准面旋回是等时的。
基准数据
当更改基准面或修正基准面时,
地理坐标系(数据的坐标值)将发生改变。
以下是
加利福尼亚州雷德兰兹的一个控制点基于北美洲基准面 1983(NAD 1983 或 NAD83)的度分秒 (DMS) 坐标:
34 01 43.77884 -117 12 57.75961
该点在北美洲基准面 1927(NAD 1927 或 NAD27)中的坐标是:
34 01 43.72995 -117 12 54.61539
两坐标
经度值有约 3 秒的差异,而纬度值有约 0.05 秒的差异。
NAD 1983 和 1984
世界坐标系 (WGS 1984) 在大部分应用中是相同的。以下是同一个控制点在 WGS 1984 中的坐标:
34 01 43.778837 -117 12 57.75961
基准种类
地心
在过去的 15 年中,卫星数据为测地学家提供了新的测量结果,用于定义与地球最吻合的、坐标与
地球质心相关联的
旋转椭球体。地球中心(或
地心)基准面使用地球的
质心作为原点。最新开发的并且使用最广泛的基准是 WGS 1984。它被用作在世界范围内进行定位测量的框架。
区域
局域基准面是在特定区域内与地球表面极为吻合的
旋转椭球体。旋转椭球体表面上的点与地球表面上的特定位置相匹配。该点也被称作基准面的
原点。原点的坐标是固定的,其他点由其计算获得。区域基准面的坐标系原点不在地心上。区域基准面的旋转
椭球体中心距地心有一定
偏移。NAD 1927 和欧洲基准面 1950 (ED 1950) 都是区域
基准面。NAD 1927 旨在尽可能与北美洲吻合,而 ED 1950 是为欧洲而构建。因为区域基准面的旋转椭球体只与地表某特定区域吻合得很好,所以它不适用于该区域之外的其他区域。
北美洲
NAD 1927:
NAD 1927 使用 Clarke 1866
旋转椭球体表示
地球形状。此基准面的原点是位于堪萨斯州的一个名为 Meades Ranch 的地球点。许多 NAD 1927 控制点都是基于 19 世纪的观测结果进行计算的。这些计算结果历经多年分阶段手动得出。因此,各观测站均存在不同误差。
NAD 1983:
测绘和
大地测量学领域取得的多项技术进步(
电子经纬仪、
全球定位系统 (GPS) 卫星、甚长
基线干涉测量法和多普勒系统等)使得现有控制点网络的许多缺点都暴露出来。当连接现有控制点与新确定的测绘结果时,差异尤为明显。新基准面的确立允许单个基准面全面覆盖北美及周围地区。
1983 北美洲基准面使用 1980 大地参考系 (GRS) 旋转椭球体基于地球和卫星两方面的观测结果绘制而成。此基准面的原点是地球的质心。这会对所有
经度值和纬度值的表面位置产生足够的影响,使得北美洲先前控制点的位置发生偏移,与 NAD 1927 相比有时会偏移 500 英尺。多个国家经过 10 年的努力,为美国、加拿大、墨西哥、
格陵兰岛、中美洲和
加勒比海地区连接出了一个控制点网络。
GRS 1980
旋转椭球体与 1984
世界坐标系 (WGS) 旋转椭球体几乎完全一致。WGS 1984 和 NAD 1983 坐标系都以地心为中心。1986 年最初发布时,NAD 1983 和 WGS 1984 被认为是一致的。但事实并非如此。WGS 1984 被绑定到国际地球参考系统 (
ITRF)。而 NAD 1983 被绑定到北美构造板块,以尽量减少今后对坐标值所做的更改。这导致 NAD 1983 和 WGS 1984 出现漂移。通常,WGS 1984 和 NAD 1983 中的坐标约有一到两米的偏差。GPS 数据实际上是根据 WGS 1984 坐标系报告的。但是,如果使用了任何类型的外部控制网络,如连续运行参考站 (CORS) 服务,则 GPS 坐标将与该坐标系而非 WGS 1984 相关联。
HARN 或 HPGN:
美国各州一直在使用最新测绘技术以尽可能将 NAD 1983 基准面重新调整到更高精度,这些技术在开发 NAD 1983 基准面时尚未得到广泛应用。这项名为“高精度参照网络”(HARN) 的工作以前被称为“高精度大地网”(HPGN),属于“国家大地测量局”(NGS) 与各州的合作项目。
时下除
阿拉斯加州以外,其他美国所有州都重新进行了测绘,已发布了 49 个州和五个准州的变换格网文件。经过调整的控制点已在“国家大地测量局”数据库中进行了
标注,标注形式为 NAD83 (19xx) 或 NAD83 (20xx),其中 xx 代表调整年份。某些点已调整多次,因此年份可能与 HARN 最初的重新调整年份不同。NGS 从未发布过在原始 HARN 与之后重新调整过的 HARN 之间进行转换的变换结果。
其他 NAD 1983 重新调整:
NGS 保留了 CORS 站的参照网络。这一组控制点被标注为 NAD 1983 (CORS96),这些点通过变换被绑定到 ITRF。其他
大地控制点使用调整年份进行标注。NGS 在美国全国范围内进行了重新调整。除 CORS 站以外的全部现有控制点均已更新,现已标注了 NAD 1983 (NSRS2007)。重新调整后的官方名称是 2007 全国空间参考系 (NSRS)。对于美国大部分地区,HARN 坐标系和 NSRS2007 之间的差异只有几厘米。因此,对于 NAD 1983 (NSRS2007) 和较早实现的 NAD 1983,并没有针对二者之间的转换计算和发布任何标准化变换,详细信息,请访问 NGS 网站。
其他美国基准面:
阿拉斯加、夏威夷、
美属萨摩亚、
关岛、
波多黎各和
维尔京群岛以及阿拉斯加岛除 NAD 1927 外还使用其他基准面。在 NAD 1983 或其历次重新调整中都参照了最新数据。
加拿大国基准面:
在采用 NAD 1983 前,加拿大进行了数次重新调整。先后实施了名为 NAD 1927 DEF 1976(通常称为 MAY76)的全国调整,以及名为 NAD 1927 CGQ77 的
魁北克省地区调整。沿海省份进行了单独调整并定义了 1977 平均地球坐标系 (ATS 1977)。上世纪八十年代,加拿大开始与美国一起定义 NAD 1983。从那时起,加拿大重新调整了其控制网络,该参考系时下称为 NAD 1983 (CSRS)。CSRS 代表加拿大空间参考系。
应用领域
(一)、利用基准面原理对华北地区中、晚石炭世
古地理进行了研究。划分出短期、中期和长期基准面旋回,并对基准面长期旋回进行了对比。在此基础上,分别将基准面上升期和下降期作为编图单元,进行古地理分析,对本地区沉积面貌有了新的认识:上升期(
本溪组)发育两大体系,下降期(
太原组)发育四大体系。
以基准面半旋回为编图单元,中、晚石炭世的沉积古地理的面貌更加清晰且规律性更强,在该区进行海陆
过渡相基准面原理地层分析是可行的。
注明:此处的“基准面”的概念与本词条中的大地基准面的概念截然不同,此处的基准面概念是
层序地层学中的概念,来源于Cross的
高分辨率层序地层学,是指一个假象的沉积补偿地质界面,基准面以上表现为剥蚀作用,基准面以下表现为沉积作用。请勿与该词条的
大地基准面混淆。
(二)、基准是机械制造中应用十分广泛的一个概念,机械产品从设计时零件尺寸的标注,制造时工件的定位,校验时尺寸的测量,一直到装配时零部件的的装配位置确定等,都要用到基准的概念。基准就是用来确定生产对象上几何关系所依据的点,线或面.
基准分为设计基准和
工艺基准,工艺基准又分为
工序基准、
定位基准、
测量基准和装配基准
基准面是指以之为基准用来确定其他点,线,面等尺寸的表面,分为设计基准面和加工基准面,前者指图纸上的基准面,后者用于实际加工,该两者最好是指工件的同一个表面,基准面通常是指一个平面。在实际的操作中,基准面是为了保证
加工精度和便于测量,在工件上选定的一个面作为定位面,在
车削加工,常以工件的外圆面、台阶面或端面做为基准,目的就是为了便于加工和测量。
在加工中,尽量使设计基准和
定位基准相重合,在多工步加工中尽量使用同一个基准面,也不要使用毛坯面做为基准面,这样便于保证加工的准确性,减少由于基准不重合造成的误差。
作为初学者也可以这样来理解:基准面就是在加工工件中,工件上相对于机床(或夹具上)一个相对固定的一个面,以此来保证其它部位加工的准确性和测量的准确性。