四舍五入
一种精确度的计数保留法
四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一,小于并包含4的数舍去为零,大于且包含5的数进位变成零。假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。这也是我们使用这种方法为基本保留法的原因。
例子
例子一:例如π在保留2位小数时被四舍五入为3.14。但是,有的时候不可以用四舍五入的方法,而要用“进一法”和“去尾法”。四舍五入里的四舍是:0、1、2、3、4,五入是:5、6、7、8、9。例如,288个学生春游,45人一辆大巴,算下来是6.4辆大巴,但是必须进一才可以不让人多出来,不让车少,因为车的数量不能为小数,所以需要7辆大巴。再例如,1016升汽油,要给汽车加油,20升一辆,平均可加50.8辆,但是必须去尾才可以不让车多出来,让油少,因为车的数量不能为小数,所以只可以给50辆汽车加油。
注:数量级:即数字所在位置权值,如3.14159这个数,3的数量级为1^(100),9的数量级为1^(10-5)。
例子二:在生活、工作中的实际应用——如全年市场份额预估达成为0.7%,但在正式大会秀出时,出于美观目的,将预估值四舍五入至1%。无论是从说抑或是显得都会有分量得多。
计算方法
应用科学计算机进行施工运算时,常遇到一种情形:在答案的整数左边,有时连着好几个小数点数字 。
如:小边255 除大边1005=tan0.2537313。
类似这种情形,如果作为参考用的tan值,经常带着这些小数点进行大小边计算,将显得繁琐。因此,为适当地去除类似小数点,又不影响实际尺寸准确性,我在这里介绍数学 中的四舍五入计算法。
通常,木工所接触的制作图,都采用公制,且以毫米(mm)为单位,制作的面积从几十毫米到十多二十米不等,只要配合实际尺寸,对小数点作适当的删除,又能使误差不超过一 毫米,就应该施行四舍五入法.应该在哪一位置施行四舍五入呢? 以毫米为单位来说,假如它在第三位,我们就在第四位作四舍五入,先看第四位:如果是4或者比四小,就把它舍去;如果它是5或者比五大,也把它舍去,但要向它的左边单位上进1,这种方法就叫四舍五入法。
再举上面的例子,用tan值乘大边,以便求出小边值。假设tan值不变,大边值改为3000,这时,以毫米为单位来算,它就在第四位,我们就取tan值小数点后的四位数作为运算值就 够了。第五位是3,因为小于4,所以将它舍去,即:0.2537乘 3000=761.1,答案的小数点这时小于1mm应把它删去,只取761mm。
但是在四舍五入中,舍去的几率有九分之四,而进一的几率有九分之五,两者不等。故有“四舍六入”的说法,在这之中,若是5需舍入,若前一位数是奇数,则进一,若是偶数,则去尾。
Excel计算
在我们日常的实际工作中,特别是财务计算中常常遇到四舍五入的问题。虽然,Excel单元格格式中允许定义小数位数,但是在实际操作中我们发现,其实数字本身并没有真正实现四舍五入。如果采用这种四舍五入的方法,在财务运算中常常会出现误差,而这是财务运算所不允许的。
在这里,有简单可行的方法进行真正的四舍五入。在Excel中,已经提供这方面的函数了,这就是ROUND函数,它可以返回某个数字按指定位数四舍五入后的数字。
例如:
round函数:按指定位数对数字进行四舍五入。如输入=round(3.158,2),则会出现数字3.16,即按两位小数进行四舍五入。rounddown函数:按指定位数舍去数字指定位数后面的小数。如输入=rounddown(3.158,2) ,则会出现数字3.15,将两位小数后的数字全部舍掉了。
roundup函数:按指定位数向上舍入指定位数后面的小数。如输入=roundup(3.158,2),则会出现数字3.16,将两位小数后的数字舍上去,除非其后为零。
注:其中的3.158可更改为单元格如A1,小数位数也可自行更改。其他的可以照搬。
同型算法
例如:1.15+1.25+1.35+1.45=5.2,若按四舍五入取一位小数计算:
1.2+1.3+1.4+1.5=5.4
数据误差
很多朋友都在使用Excel编辑、处理各种数据报表,在使用过程中往往会发现Excel自动计算的结果与我们自己手动计算的结果会出现一个误差。
例如Excel工作表中有B2=16.18、C2=12.69,将B2与C2之和乘以0.11,将结果“四舍五入”,保留两位小数,再将结果乘以3.12,再“四舍五入”保留两位小数,Excel的计算结果是“9.91”,而我们手工计算的结果是“9.92”。
这里,之所以会造成计算结果9.91与9.92的不同,是因为Excel运算运用了“四舍五入”。
在设置表格的时候,在“单元格格式”窗口中设置的“小数位数”只能将单元格中的数值“显示内容”四舍五入,并不能对所存放的“数值”四舍五入。换句话说,显示内容和实际存放内容(即参与运算的内容)并非完全一致。因此,造成Excel计算结果与实际需求出现误差的元凶,正是单元格数据的显示内容与参与计算内容的不一致性。为了避免造成这种误差,解决方法有:
其一是利用Round函数对小数进行精确的四舍五入,其格式为:round(number,num_digits),其中“number” 为需要四舍五入的数字或运算公式,num_digits指定四舍五入的位数。针对本文所述问题,我们只需在D2单元格中输入“=Round((B2+C2)*0.11,2)”,在“E2”单元格中输入“=Round(D2*3.12,2)”即可。另外,我们还可以通过Excel进行一下简单的设置来达到精确计算的目的,点击Excel菜单栏的“工具/选项”,在弹出的“选项”窗口中切换到“重新计算选项卡,在“工作簿选项”栏中将“以显示值为准”复选框打上钩,点“确定”按钮即可。
参考资料
国家标准|GB/T 8170-2008.国家标准全文公开系统.2008-07-16
最新修订时间:2024-11-05 15:24
目录
概述
例子
参考资料