极光是夜空中绚烂的光影,根据地理位置的不同,可分为北极光和南极光。地球的极光由太阳风引起,当太阳风到达地球时,其中的高能带电粒子流在地球强场作用下,会沿着磁力线的方向到达两极,从而星现灿烂美丽的光辉。如在太阳活动盛期,极光有时会延伸到中寒度地带,在各地形成明暗不同、颜色各异的光。
极光形态
极光,是由80~500公里高空的电爆引起的发光现象。 地球的“
磁南极”和“
磁北极”构成的强大磁场是呈弧形磁力线作螺旋运动移向两极,从而使极地上空大气层若干气体发出光芒。
根据关于极光分布情况的研究,极光区的形状不是以
地磁极为中心的圆环状,而是卵形。极光的光谱线范围约为3100~6700埃,其中最重要的
谱线是5577埃的
氧原子绿线,称为极光绿线。
大多数极光出现于地球上空90-130千米处。1959年,一次北极光所测得的高度是160千米,宽度超过4800千米。但有些极光要高得多,高度可达560-1000千米以上。
观测区域
由于
地磁场的作用,这些高能粒子转向极区,所以极光常见于高磁纬地区。在大约离
磁极25°~30°的范围内常出现极光,这个区域称为
极光区。地磁纬度在60°-90°的范围称为极光区,地磁纬度45°-60°之间的区域称为弱极光区,地磁纬度低于45°的区域称为微极光区。
基本分类
极光依性质可分为扩散极光和分立极光两种类型。即使在黑暗的天空中,肉眼可能还是看不见扩散极光散发出弥漫在天空中的微光和形状,但它定义出了极光带的范围。
分立极光是在几乎看不见的扩散极光中能够明确看出形状的部分,肉眼很容易就能看见它们,最亮时的亮度足以在夜晚阅读书报。但分立极光还是只能在夜空中被看见,因为它的亮度还不足以在阳光下呈现。极光在极光带中出现时通常是弥漫性的光斑或弧形,且通常是在裸眼可见的程度之下。分立极光通常会显示出磁场线或像帘幕状的结构,最常见的是绿色的萤光,并且可以在数秒钟内发生变化,或是几个小时光度都不变。
按照极光的形态分类,可分为匀光弧极光、射线式光柱极光、射线式光弧光带极光、帘幕状极光、
极光冕等。
按照极光观测的电磁波波段,可分为光学极光、无线电极光等。
按激光激发粒子类型,可分为电子极光、质子极光等。
按照极光发生区域,可分为极盖极光、极光带极光 、中纬极光红弧等。
现代潮流引导与推荐比照气象学来区分极光的现象,但尚未被完全认同。
产生原因
极光出现于星球的高磁纬地区上空,是一种绚丽多彩的发光现象。而地球的极光,来自地球
磁层和太阳的高能
带电粒子流(
太阳风)使高层大气分子或
原子激发(或
电离)而产生。极光产生的条件有三个:
大气、
磁场、高能带电粒子。这三者缺一不可。极光不只在地球上出现,太阳系内的其他一些具有磁场的
行星上也有极光。
极光一般只在南北两极的高纬度地区出现,但是2010年8月1日的太阳风暴恰好面向地球爆发,携带大量带电粒子的太阳风准确无误地“击中”地球,与
地球磁场相互作用产生“磁暴”,使美国密歇根州、丹麦和英国等纬度稍低的地区都能够看到美丽的北极光景观。专家称,这一次的
太阳风暴并没有像事先推测的那样破坏全球的卫星和电信系统,却给地球带来一场壮丽的“焰火盛会”。
极光是地球周围的一种大规模放电的过程。来自太阳的带电粒子到达地球附近,地球磁场迫使其中一部分沿着磁场线集中到南北两极。当他们进入极地的高层大气(大于80km)时,与大气中的原子和分子碰撞并激发,能量释放产生的光芒形成围绕着磁极的大圆圈,即极光。
极光最易出现的时期是春分和秋分两个节气来临之前,且春秋两季出现频率更甚夏冬。这是因为在春分和秋分两节气时地球位置与“磁索”交错最甚。另外,在太阳黑子多的时候或当太阳周期在日冕大量抛射增加和太阳风强度增强的阶段时,极光出现的频率和亮度也会增加。
现代观点
许多科学家正在对极光作深入的研究。人们看到的极光,主要是
带电粒子流中的电子造成的。而且,极光的颜色和强度也取决于沉降粒子的能量和数量。用一个形象比喻,可以说极光活动就像磁层活动的实况电视画面。沉降粒子为电视机的电子束,地球大气为电视屏幕,地球
磁场为电子束导向磁场。科学家从这个天然大电视中得到磁层以及日地空间电磁活动的大量信息。例如,通过极
光谱分析可以了解沉降粒子束来源,粒子种类,能量大小,地球
磁尾的结构,
地球磁场与
行星磁场的相互作用,以及太阳扰乱对地球的影响方式与程度等。
极光虽然美丽,但是在地球大气层中投下的能量,可以与全世界各国发电厂所产生电容量的总和相比。这种能量常常搅乱无线电和
雷达的信号。极光所产生的强力电流,也可以集结在长途电话线或影响微波的传播,使电路中的电流局部或完全“损失”,甚至使电力传输线受到严重干扰,从而使某些地区暂时失去电力供应。怎样利用极光所产生的能量为人类造福,是当今科学界的一项重要使命。
电磁离子回旋波是一种典型的微观尺度波动,其常通过回旋共振和带电粒子相互作用,这种作用的结果之一就是导致空间中的带电粒子沉降到地球大气中,这些沉降粒子还可以通过后续的过程产生极光等现象。
产生原理
极光是地球周围的一种大规模放电的过程。来自太阳的带电粒子到达地球附近,地球磁场迫使其中一部分沿着磁场线(Field line)集中到南北两极。当他们进入极地的高层大气时,与大气中的原子和
分子碰撞并激发,产生光芒,形成极光。经常出现的地方是在南北纬度67度附近的两个环带状区域内,
阿拉斯加的
费尔班(Fairbanks)一年之中有超过200天的极光现象,因此被称为“北极光首都”。极光最经常出现的地方在南北纬67度附近的“极光卵”内,分别称作北极光区和南极光区。而在南北极的核心地区,反而不容易观看到极光。太阳风暴期间,在许多以往看不到极光的地区,也能有幸看到美丽的极光。
地球磁层磁力线携带太阳风的能量进入地球内部,进而驱动了地磁场的形成。在这磁层磁力线闭合环路上除了有地球内部的导电体之外,另外还有大气层的
电离层这一弱导电体。当太阳风强烈时,磁力线能量遇到地球内部的磁感抗,有许多
能量消耗不掉,于是就在电离层处形成了极光。
出现多种颜色,是由于
太阳活动较为剧烈,同时,也和太阳释放出的高能粒子与大气中的氧原子、氮原子等不同原子碰撞有直接关系。
自然特征
极光之美
极光被视为自然界中最漂亮的奇观之一。早在2000多年前,中国就开始观测极光,有着丰富的极光记录。极光多种多样,五彩缤纷,形状不一,绮丽无比,在自然界中还没有哪种现象能与之媲美。任何彩笔都很难绘出那在严寒的两极空气中嬉戏无常、
变幻莫测的炫目之光。 极光有时出现时间极短,犹如节日的焰火在空中闪现一下就消失得无影无踪;有时却可以在
苍穹之中辉映几个小时;有时像一条彩带,有时像一团火像一张五光十色的巨大银幕,
仿佛上映一场
球幕电影,给人视觉上以美的享受。如果我们乘着
宇宙飞船,越过地球的南北极上空,从遥远的
太空向地球望去,会见到围绕
地球磁极存在一个闪闪发亮的光环,这个环就叫做
极光卵。由于它们向太阳的一边有点被压扁,而背太阳的一边却稍稍被拉伸,因而呈现出卵一样的形状。极光卵处在连续不断的变化之中,时明时暗,时而向赤道方向伸展,时而又向极点方向收缩。处在午夜部分的光环显得最宽最明亮。
长期观测统计结果表明,极光最经常出现的地方是在南北
磁纬度67度附近的两个环带状区域内,分别称作南极光区和北极光区。在极光区内差不多每天都会发生极光活动。在极光卵所包围的内部区域,通常叫做极盖区,在该区域内,极光出现的机会反而要比纬度较低的极光区来得少。在中低纬地区,尤其是近赤道区域,很少出现极光,但并不是说压根儿观测不到极光。1958年2月10日夜间的一次特大极光,在热带都能见到,而且显示出鲜艳的红色。这类极光往往与特大的
太阳耀斑暴发和强烈的
地磁暴有关。在寒冷的极区,人们举目瞭望夜空,常常见到五光十色,千姿百态,各种各样形状的极光。毫不夸大地说,在世界上简直找不出两个一模一样的极光形体来,从科学研究的角度,人们将极光按其形态特征分成五种:一是底边整齐微微弯曲的圆弧状的
极光弧;二是有弯扭折皱的飘带状的
极光带;三是如云朵一般的片朵状的
极光片;四是面纱一样均匀的帐幔状的
极光幔;五是沿磁力线方向的射线状的
极光芒。
极光形体的亮度变化也是很大的,从刚刚能看得见的
银河星云般的亮度,一直亮到满月时的月亮亮度。在强极光出现时,地面上物体的轮廓都能被照见,甚至会照出物体的影子来。最为动人的当然是极光运动所造成的瞬息万变的奇妙景象。我们形容事物变得快时常说:“眼睛一眨,老母鸡变鸭。”极光可真是这样,翻手为云,覆手为雨,变化莫测,而这一切又往往发生在几秒钟或数分钟之内。极光的运动变化,是自然界这个
魔术大师,以天空为舞台上演的一出光的话剧,上下纵横成百上千公里,甚至还存在近万公里长的
极光带。这种宏伟壮观的自然景象,好像沾了一点仙气似的,颇具神秘色彩。令人叹为观止的则是极光的色彩,早已不能用五颜六色去描绘。说到底,其本色不外乎是红、绿、紫、蓝、白、黄,可是大自然这一超级画家用出神入化的手法,将深浅浓淡、隐显明暗一搭配、一组合,好家伙,一下子变成了万花筒啦。
根据不完全的统计,能分辨清楚的极光色调已达一百六十余种。极光这般多姿多彩,如此变化万千,又是在这样辽阔无垠的穹窿中、漆黑寂静的寒夜里和荒无人烟的极区,此情此景,此时此刻,面对五彩缤纷的极光图形,亲爱的读者,你说能不令人心醉,不叫人神往吗?无怪乎在许许多多的极区探险者和旅行家的笔记中,描写极光时往往显得语竭词穷,只好说些“无法以言语形容”,“再也找不出合适的词句加以描绘”之类的话作为遁辞。是的,普通的美丽、壮观、奇妙等字眼在极光面前均显得异常的苍白无力,可以说,即使有生花妙笔也难述说极光的神采、气势、秉性脾气于万一。
神奇声音
北极光是指常出现于地球高纬度地区高层大气中的发光现象,是
太阳风与
地球磁场相互作用的结果。北极光非常绚烂美丽,而伴随北极光发生的,是一种很神秘的声音。
一直以来,有关这种神秘的北极光声音流传着许多的传说,也让在荒野的人们感到恐惧和敬畏。
北极光发出的这种含混不清的爆裂声的来源,终于首次在科学上得到了合理的解释。
芬兰阿尔托大学的科学家们发现了北极光神秘声音的来源,这种声音产生于距地面70米的空中。与此相比,由地球磁场干扰而产生的绚烂而变幻莫测的北极光,则是产生于距离地面120千米的高空。
为了找到声音的来源,科学家们利用了三个互相独立的麦克风,在观测点记录下了北极光的声音。接着,科学家们对这些声音进行对比分析,从而最终确定了北极光声音的来源。当北极光在观测点出现的同时,
芬兰气象研究所也同步测量到了伴随北极光产生了地磁干扰。
阿尔托大学的莱恩(Unto K. Laine)教授表示,“我们研究发现,在北极光出现期间,人们可以听见一种伴随极光自然产生的声音。过去,我们认为极光离我们太远,不可能会听到极光发出的声音,这种推断没有错,但事实是,极光是由太阳产生的能量粒子干扰地球磁场而产生的,它们在很远的天边,伴随极光的声音也是由类似原因而产生,只不过产生这种声音的地方离地面更近。”
有关北极光神秘声音产生的具体原因仍然是一个迷,这种声音并不是每次都会伴随极光而来。从被记录下来的声音来看,这种声音听起来像是一种含混不清的爆裂声,并往往只持续一小段时间。另外一些听到过极光声音的人把这种声音描述为一种噼啪声,并且感觉声音的距离很远。通过这些不同的描述,科学家们推测北极光声音产生的背后可能有着若干不同的原理。
研究发展
观测地点
大多数极光发生在地球上空90~130千米处。美国
匹兹堡磁纬高,就比在北京看到极光的机会大多了。2004年11月7日晚,较强极光匹兹堡出现过。 肉眼能看出绿色,红色。2003年11月20日傍晚,极光出现于匹兹堡南方地平线,一小时后消退。半夜时又发生于北方低空。2003年10月30日出在匹兹堡的极光,虽然是在光污染严重的市内,但仍能看到红色的光芒。但有些极光要高得多。1959年,一次北极光 所测得的高度是160千米,宽度超过4800千米。
在地平线上的城市灯光和高层建筑可能会妨碍我们看光,所以最佳的极光景象要在乡间空旷地区才能观察得到。美国的
费尔班克斯一年有200多天能看到极光;而在
佛罗里达州,一年平均只能见到4次左右。我国最北端的
漠河,也是观看极光的好地方。18世纪中叶,
瑞典一家地球物理
观象台的科学家发现,当该台观测到极光的时候,地面上的
罗盘的指针会出现不规则的方向变化,变化范围有1度之多。与此同时,伦敦的地磁台也记录到类似的这种现象。由此他们认为,极光的出现与
地磁场的变化有关。原来,极光是太阳风与地球磁场相互作用的结果。太阳风是太阳喷射出的带电粒子,当它吹到地球上空,会受到地球磁场的作用。高层大气是由多种气体组成的,不同元素的气体受轰击后所发出的光的前面色不一样。例如
氧被激后发出绿光和红光,氮被激后发出紫色的光,氩激后发出蓝色的光,因而极光就显得绚丽多彩,变幻无穷。
科学家已经了解到,
地球磁场并不是对称的。在太阳风的吹动下,它已经变成某种“流线型”。就是说朝向太阳一面的磁力线被大大压缩,相反方向却拉出一条长长的,形似
彗尾的地球磁尾。磁尾的长度至少有1000个
地球半径长。由于与日地空间
行星际磁场的偶合作用,变形的地球磁场的两极外各形成一个狭窄的、磁场强度很弱的极尖区。因为
等离子体具“冻结”磁力线特性,所以,太阳风粒子不能穿越地球磁场,而只能通过极尖区进入地球磁尾。当太阳活动发生剧烈变化时(如耀斑爆发),常引起地球
磁层亚暴。于是这些带电粒子被加速,并沿磁力线运动。从极区向地球注入,这些带电粒子撞击高层大气中的气体分子和原子,使后者被激发——退激而发光。不同的分子,原子发生不同颜色的光,这些单色光混合在一起,就形成多姿多彩的极光。事实上,人们看到的极光,主要是
带电粒子流中的电子造成的。而且,极光的颜色和强度也取决于沉降粒子的能量和数量。用一个形象比喻,可以说极光活动就像磁层活动的实况电视画面。沉降粒子为电视机的电子束,
地球大气为电视屏幕。地球磁场为电子束导向磁场。极光的形成与
太阳活动息息相关。逢到太阳活动极大年,可以看到比平常年更为壮观的极光景象。
在许多以往看不到极光的纬度较低的地区,也能有幸看到极光。2000年4月6日晚,在欧洲和美洲大陆的北部,出现了极光景象。在地球北半球一般看不到极光的地区,甚至在美国南部的
佛罗里达州和德国的中部及南部广大地区也出现了极光。当夜,红、蓝、绿相间的光线布满夜空中,场面极为壮观。虽然这是一件难得一遇的幸事,但在往日平淡的天空突然出现了绚丽的色彩,在许多地区还造成了恐慌。据德国波鸿天文观象台台长卡明斯基说,当夜德国莱茵地区以北的警察局和天文观象台的电话不断,有的人甚至怀疑又发生毒气泄漏事件。这次极光现象被远在160公里高空的观测太阳的
宇宙飞行器ACE发现,并发出了预告。在北京时间4月7日凌晨零时三十分,宇宙飞行器ACE发现一股携带着强大带电粒子的太阳风从它旁边掠过,而且该太阳风突然加速,速度从每秒375公里提高到每秒600公里,一小时后,这股太阳风到达地球大气层外缘,为我们显示了难得一见的造化神工。
其它行星
木星和
土星这两颗行星都有比地球更强的磁场(木星在赤道的磁场强度是4.3高斯,相较之下地球只有0.3高斯),而且两者也都有强大的辐射带。哈勃太空望远镜也很清楚的看见这两颗行星的极光。在巨大气体行星上的极光看起来与地球的相似,也是由太阳风提供能量,另外,木星的卫星,特别是埃欧,更是木星极光的能量来源。这些电流是沿着场线(场准直电流)涌生出的,肇因于卫星绕着行星公转的相对运动,引起的发电机机制。有着火山活动和
电离层的埃欧,是带电粒子的强力来源,从1955年开始就在研究由它的电流所发射出来的电波辐射。使用
哈柏太空望远镜也在埃欧、欧罗巴和甘尼米德上观测到极光,当木星磁气圈的
等离子撞击到它们稀薄的大气层时,就会产生极光。在金星和火星上也曾观测到极光。因为金星没有内在(行星本身)的磁场,金星的极光呈现不同的形状和强度,看起来是明亮但弥漫的补丁,有时会分布在整个行星的盘面。金星的极光源自太阳风的粒子撞击和陷入在夜晚侧的大气层。在2004年8月14日,火星快车号上的仪器SPICAM检测到火星的极光。这道极光位于erra Cimmeria,东经177°,南纬52°,辐射区域大约宽30公里,高度在8公里左右。经由分析包括
火星全球探勘者号过去的地壳磁场异常资料,科学家发现辐射的地区是相对来说是区域性的局部磁场最强的地区。这种相关性显示,电子是通过火星地壳的磁力线与被激发的大气层移动。
南欧洲天文台发表了在2000年11月拍摄到木星上极光的照片,和木星两极上空的烟雾,这是科学家第一次清楚拍摄到木星两极的情况。
木星(Jupiter)离地球(Earth)约六亿一千万公里,过去,科学家曾经利用太空总署(NASA)的哈勃太空望远镜(Hubble Space Telescope),拍摄到木星极光(aurora)的照片,不过,使用南欧洲
天文台(European Southern Observatory)的红外线(infrared)望远镜,科学家可以更清楚地观察到木星极光和北极上空的烟雾。
科学家指出,极光是环绕木星的磁轴(magnetic axis),而这些烟雾,是环绕着木星的旋转轴(rotation axis),是在极光环之下;烟雾是受到木星上的地带风(zonal winds)影响,这些地带风是在同一纬度(latitude)上移动的;科学家相信,木星以十小时一次的迅速自转,也会影响两极上空烟雾的移动。
对
土星极光发射所做的一项新的研究,发现了一个二级极光卵形环(auroral oval),亮度是主极光卵形环的四分之一。主极光卵形环是十多年前首次在哈勃太空望远镜的图像中看到的,此后其形态已被详细确定,但关于其起源一直存在争论。一种理论认为,它们是地球上所看到的极光卵形环(主要由与太阳风的相互作用形成)和木星上的极光卵形环(由与
等离子流的相互作用形成)之间的一个混合结构。但土星二级极光卵形环的性质表明,它是木星主极光卵形环的一个弱对应体,它之所以相对较暗,是由于土星没有一个像“
木卫一”(有
火山喷发活动)这样的大型离子源。因此土星和木星上的极光形成过程是非常相似的,其外观的差别是由比例尺差别造成的。
木星远紫外线喷射最新观测显示,明亮的木星极光爆发很可能是由行星-卫星交互作用产生的,而不是受太阳活动性影响。研究小组指出,木星极光喷射揭示能量通过木星大磁气圈传输和消散,然而主要的极光喷射是恒稳态行星旋转的内部驱动,短暂的明亮发光通常被认为是外部太阳风受压引发。Hisaki探测器和
哈勃望远镜提供的证据表明,最新观测到的明亮木星极光实际上是内部驱动所致。强烈喷射从木星极冠区域延伸至木卫一极光迹象附近的纬度,暗示着通过内部等离子循环过程,能量快速进入木星极地区域。
木星观测者知道这颗巨大行星经常出现极光,比地球极光明亮数千倍,并且覆盖范围是地球面积数倍,通常他们认为木星极光是太阳带电粒子与木星磁场发生碰撞所产生的,也可能是由于木星和它的卫星单独交互作用所致。
但是这些极光耀眼明亮周期类似于地球极光,没有人能够明确跟踪分析究竟是哪一种原因导致的。木星和木卫一交互作用产生的极光现象,木卫一表面火山释放带电离子和电子云,进入木星周边弥漫强磁场的区域,这里的磁场是地球磁场强度的数千倍。
伴随着木星快速旋转,木星磁场旋转作用下牵引木卫一物质环绕其周围,导致木星极地出现强电场。这种加速离子和电子产生强极光现象,几乎照亮了电磁波谱所有部分,但不包括紫外线、X射线高能波谱带。
补充资料
极光是南北极地区特有的一种大气发光现象。极光在东西方的神话传说中都留下了美丽的身影,现代科学的发展,使人类能够用理性的眼光看待极光,对它作出科学的解释。
长期以来,极光的成因机理未能得到满意的解释。在相当长一段时间内,人们一直认为极光可能是由以下三种原因形成的。一种看法认为极光是地球外面燃起的大火,因为北极区临近地球的边缘,所以能看到这种大火。另一种看法认为,极光是
红日西沉以后,透射反照出来的辉光。还有一种看法认为,极地冰雪丰富,它们在白天吸收阳光,贮存起来,到夜晚释放出来,便成了极光。总之,众说纷纭,无一定论。直到20世纪60年代,将
地面观测结果与卫星和火箭探测到的资料结合起来研究,才逐步形成了极光的物理性描述。
人们认识到,极光一方面与地球高空大气和地磁场的大规模相互作用有关,另一方面又与太阳喷发出来的高速带电
粒子流有关,这种粒子流通常称为
太阳风。由此可见,形成极光必不可少的条件是大气、磁场和太阳风,缺一不可。具备这三个条件的太阳系其他行星,如木星和
水星,它们的周围,也会产生极光,这已被实际观察的事实所证明。
地磁场分布在地球周围,被太阳风包裹着,形成一个棒槌状的胶体,它的科学名称叫做
磁层。为了更形象化,我们打这样一个比方。可以把磁层看成一个巨大无比的电视机显像管,它将进入高空大气的太阳风粒子流汇聚成束,聚焦到地磁的极区,极区大气就是显像管的荧光屏,极光则是电视屏幕上移动的图像。但是,这里的电视屏幕却不是18英寸或24英寸,而是直径为4000公里的极区高空大气。通常,地面上的观众,在某个地方只能见到画面的1/50。在电视显像管中,电子束击中电视屏幕,因为屏上涂有发光物质,会发射出光,显示成图像。同样,来自空间的电子束,打入极区高空大气层时,会激发大气中的分子和原子,导致发光,人们便见到了极光的图像显示。在电视显像管中,是一对电极和一个电磁铁作用于电子束,产生并形成一种活动的图像。在极光发生时,极光的显示和运动则是由于粒子束受到磁层中电场和磁场变化的调制造成的。
极光不仅是个光学现象,而且是个无线电现象,可以用雷达进行探测研究,它还会辐射出某些无线电波。有人还说,极光能发出各种各样的声音。极光不仅是科学研究的重要课题,它还直接影响到无线电通信,长电缆通信,以及长的管道和电力传送线等许多实用工程项目。极光还可以影响到气候,影响生物学过程。当然,极光也还有许许多多没有解开的谜。
产生极光的原因是来自大气外的
高能粒子(电子和质子)撞击高层大气中的原子的作用。这种相互作用常发生在地球磁极周围区域。作为太阳风的一部分荷电粒子在到达地球附近时,被地球磁场俘获,并使其朝向磁极下落。它们与氧和氮的原子碰撞,击走电子,使之成为激发态的离子,这些离子发射不同波长的辐射,产生出红、绿或蓝等色的极光特征色彩。在太阳活动盛期,极光有时会延伸到
中纬度地带,例如,在美国,南到北纬40度处还曾见过北极光。极光有发光的帷幕状、弧状、带状和射线状等多种形状。发光均匀的弧状极光是最稳定的外形,有时能存留几个小时而看不出明显变化。然而,大多数其他形状的极光通常总是呈现出快速的变化。弧状的和折叠状的极光的下边缘轮廓通常都比上端更明显。极光最后都朝地极方向退去,辉光射线逐渐消失在弥漫的白光天区。造成极光动态变化的机制尚示完全明了。在太阳创造的诸如光和热等形式的能量中,有一种能量被称为“太阳风”。这是一束可以覆盖地球的强大的带电亚原子颗粒流,该太阳风在地球上空环绕地球流动,以大约每秒400公里的速度撞击地球磁场,磁场使该颗粒流偏向
地磁极,从而导致带电颗粒与地球上层大气发生化学反应,形成极光。在南极地区形成的叫
南极光。在北极地区同样可看到这一现象,一般称之为北极光。
科学家已经了解到,地球磁场并不是对称的。在太阳风的吹动下,它已经变成某种“流线型”。就是说朝向太阳一面的磁力线被大大压缩,相反方向却拉出一条长长的,形似
彗尾的地球磁尾。磁尾的长度至少有1000个地球半径长。当太阳活动发生剧烈变化时(如耀斑爆发),常引起地球
磁层亚暴。
现年40岁的琳达-德雷克(Linda Drake)在过去的4年中拍摄了众多美轮美奂的
北极光图片。每年她都会冒着零下20度的低温来到加拿大
马尼托巴省,以期能捕捉到最精彩的极光图片。如图右
这项研究是由美国
加州大学洛杉矶分校的安吉罗波洛斯主持,其研究结果已于2007年12月9日在“
美国地球物理联合会”的学术会议中发表。
在北半球观察到的极光称北极光,南半球观察到的极光称南极光,经常出现的地方是在南北纬度67度附近的两个环带状区域内,
阿拉斯加的
费尔班克斯(Fairbanks)一年之中有超过200天的极光现象。
2017年6月13日,日本国立极地研究所与
东京大学、
京都大学和
名古屋大学的研究团队宣布,利用高性能摄像机,历时3年成功拍摄到高速闪烁的极光影像。短时间里重复出现明暗闪烁的特殊极光是在氢离子作用下产生。外界期待此研究能进一步揭开极光发生之谜。
观测记录
2003年,河北兴隆出现过极光。而在当时,北京平谷也有观测到极光的报告。
当地时间2022年3月3日,冰岛东南部维斯特拉霍恩山,当地天空现曼妙极光。
当地时间2022年3月14日,俄罗斯列宁格勒,绚烂极光点亮当地夜空。
2022年4月13日据英国《独立报》网站报道,科学家在中国古代编年史中发现最早的极光记录。
2023年12月1日晚,黑龙江漠河北极村出现红绿极光。而根据中国国家地理频道官方微博账号,12月1日晚,也有网友在北京怀柔拍摄到极光,这是北京史上第二次极光影像记录。
据
国家空间天气监测预警中心消息,
地磁活动仍在继续,受太阳日冕物质抛射(CME)爆发影响,2023年12月4日可能发生小到中等
地磁暴。受地磁暴影响,中国黑龙江、内蒙古、新疆等地均出现极光活动,甚至北京此次都有清晰的极光目击和观测记录。
2023年12月,据国家空间天气监测预警中心,受太阳冕洞高速太阳风和12月1日太阳日冕物质抛射(CME)的共同影响,12月4日可能发生小到中等地磁暴。除了在高纬度地区产生美丽的极光外,磁暴还可能对地球和人类活动产生其他影响。
2024年5月10日夜间,佛罗里达州多地出现极光。德国、瑞士、英国和西班牙等国也称出现极光。南美的智利和阿根廷等国部分南部城市夜空也被南极光点亮。
2024年5月10日到11日印度天体物理研究所的天文学家在几小时内,在北纬34度的喜马拉雅山麓的夜空中也观测到红色的极光。
2024年5月11日,黑龙江漠河和新疆部分地区全都出现了绚丽的极光。
2024年5月11日凌晨,新疆阿勒泰摄影师Jeff的星空之旅拍摄到极光活动,红色、紫色、绿色的极光交相辉映,如梦如幻。
2024年5月11日夜间至12日凌晨,北京怀柔慕田峪、白河湾、喇叭沟门,黑龙江、新疆等地出现了明显的极光景象。
2024年5月10日晚至11日凌晨,地球磁场爆发了特大地磁暴。在地球磁场和大气的共同作用下,英国、德国、美国、加拿大、新西兰、日本等世界各地出现极光现象。
2024年9月12日14时至14日08时,地球累计出现长达27小时的地磁暴过程,其中6小时为Kp指数7的大地磁暴,伴随着地磁活动的发生,我国黑龙江漠河、甘肃敦煌、内蒙古呼伦贝尔等地再次迎来绚丽的极光秀。
北京时间9月14日23时29分,太阳活动区13825爆发了一次明显的耀斑,其峰值强度为X4.5级达到大耀斑等级。可能在9月16至17日影响地球将可能发生地磁暴,根据可能发生的地磁暴强度来预判,中国可能出现极光活动,但是受到中秋期间满月月光的影响,观测效果可能稍差。
2024年10月4日,空间环境预报微信公众号发布强地磁暴预警极光或将再次出现。
2024年10月10日晚间至11日凌晨,中国黑龙江、吉林、内蒙古、新疆、甘肃、青海、河北等地均出现了较为明显的红色极光。