功率MOSFET属于电压控制型器件,它在导通时的
伏安特性呈
线性关系。用功率MOSFET做
整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
DK5V45R25和DK100R20是锂电池升压输出5V1A,2A的同步整流升压经典
IC,FP6717,FP6716也是锂电池升压输出5V3A,5V2A中的佼佼者。
电子技术的发展,使得电路的
工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体
功率消耗,但也给电源设计提出了新的难题。
开关电源的损耗主要由3部分组成:
功率开关管的损耗,
高频变压器的损耗,输出端
整流管的损耗。在低电压、
大电流输出的情况下,
整流二极管的
导通压降较高,输出端整流管的损耗尤为突出。
快恢复二极管(
FRD)或
超快恢复二极管(
SRD)可达1.0~1.2V,即使采用低压降的
肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,
电源效率降低。
举例说明,
笔记本电脑普遍采用3.3V甚至1.8V或1.5V的
供电电压,所消耗的电流可达20A。此时超快恢复
二极管的整流损耗已接近甚至超过电源
输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)PO,占电源
总损耗的60%以上。因此,传统的二极管
整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约
DC/DC变换器提高效率的瓶颈。
这两种
整流管都可以看成一扇电流通过的门,电流只有通过了这扇门才能供负载使用。
而同步整流技术有点类似我们通过的较高档场所的
感应门了:它看起来是关着的,但你走到它跟前需要通过的时候,它就自己开了,根本不用你自己费大力去推,所以自然就没有什么损耗了。
通过上面这个类比,我们可以知道,同步整流技术就是大大减少了开关电源输出端的整流损耗,从而提高
转换效率,降低电源本身发热。
在开关管V导通时,变压器接收的电能除了
磁化电流外都将传送到输出端。而管V关跃的
反激作用期间,导向
二极管D2用反
偏置故不可能有钳位作用或能量
泄放的回路。磁化能量将会产生较大的
反压加在开关管的集一射极之间。为了防止高反压的产生,设置了“能量再生
绕组”P2,由绕组△经过二极管D,,使存储的能量反馈回
直流电源Ui中。只要满足Wp1=Wp2的关系,D1流过电流时Up2=Ui,则开关管V上承受的集一射极电压为2Ui。
为了避免在P1和P2绕组之间存在的
漏电感过大,和因此而在开关管
集电极上产生过高的电压,一般采用初级绕组P1与能量再生绕组P2双线并绕的方法。在这种配置中,二极管D1接在能量再生绕组如图1所示的位置是非常重要的。原因是双线并绕引起的内部杂散电容Cc是在开关管V的集电极与绕组P2和D1
连接点之间的
寄生电容。按照图1中的接法是有优点的,如在开关管V导通时,由于二极管D,反向而隔开了集电极,没有任何的电流在V瞬时导通时流进电容Cc中(注意,绕组P1和P2的非同铭端同时变负,而且Cc的两端电压不会改变)。但是在反激期间,Cc提供开关管V的钳位作用,任何过电压的趋势都会引起Cc流过电流,而且经过D,反馈到
电源线上。如果寄生电容不够大,只靠P1、P2绕组磁耦合,
钳位电压超值时,常常可以在%位置加外接电容补充以改善它的钳位作用。然而,如果
电容值过大时,会使得
输出电压线上有输人电压叽
纹波频率调制的电压分量,所以要小心地选用附加电容Cc的值。
在开关管V导通时,
输入电压Ui加在(Lp+LLT)上,由于D2反偏置阻止C2的充电,所以Uc2≈0。当开关管V关断时,由于反激作用,V的集电极电压Uc快速上升,但由于此时受正偏压而导通,使V电流被C2、R1分流,Uc电压逐渐上升,即U(电压也是逐渐上升,而且
钳位在2Ui数值上。从而把Uc上升的
尖峰电压的顶部消去,如
虚线所示的
脉冲尖峰)。
在一个周期剩下的时间里,随着R1
放电电流的减小,C2上的
电压降会返回到原来值。多余的反激电能,被消耗在R1上。此钳位电压是自跟踪的,在稳态工作时,因为C2上的电压会自动地调整,直到所有多余的反激
电能消耗在R1上。如果在所有其他情况下,都要维持某一恒定钳位电压时,则可以通过减小R1值或漏电感Lyp的值,来抑制钳位电压的升高趋势。
不能把钳位电压设计得太低,因为反激过冲电压也有有用的一面。在反激作用时,它提供了一个附加强制电压值来驱动电能进入到次级电感。使变压器次级的反激电流迅速增加。提高了变压器的
传输效率,同时也减小了电阻R上的损耗。这对于低压大电流输出是很有意义的。
从同步整流
原理图2中可以看出,整流管VT3和
续流管VT2的
驱动电压从变压器的副边绕组取出,加在MOS管的栅G和漏D之间,如果在独立的电路中
MOS管这样应用不能完全开通,损耗很大,但用在同步整流时是可行的简化方案。由于这两个管子开关状态互锁,一个管子开,另一个管子关,所以我们只简要分析电感电流连续时的开通情况,我们知道MOS管具有体内寄生的反并联二极管,这样电感电流连续应用时,MOS管在真正开通之前并联的二极管已经开通,把源S和漏D相对栅的
电平保持一致,加在GD之间的电压等同于加在GS之间的电压,这样变压器副边绕组
同名端为正时,整流管VT3的
栅漏电压为正,整流管零压开通,当变压器副边绕组为负时,续流管VT2开通,
滤波电感续流。栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。