过失速机动
飞机在超过失速迎角之后,仍然有能力完成可操纵的战术机动
过失速机动就是飞机在超过失速迎角之后,仍然有能力完成可操纵的战术机动。它主要用在为占据有利位置的机动飞行中。 失速迎角:失速过程与飞机的飞行姿态和迎角有线性关系,所以通常也用飞机失速时的临界迎角表示该飞机的机动能力,这就是失速迎角。
实际运用
现代空战中,制导武器大量使用,但制导武器是依赖前期的雷达锁定信息的,机载雷达的照射视线是有方向性的,而且制导武器本身的制导装置也是有方向性的。因此,将对方尽快纳入你的雷达视野或尽快逃出对方雷达或制导武器的视野是攻防的要素。如果飞机总在速限以上飞行,则无论转弯还是爬升,其动作都会很大,时间也较长,不利于锁定和反锁定。过失速机动就是要求飞机在超过自身失速迎角的大迎角状态下,对飞机的姿态做出调整,从而达到瞬间改变敌我态势的目的的一种机动形式。
战机在进入目视格斗状态之后,攻击机要使目标机尽快进入自己允许的发射区,目标机则要摆脱攻击机并伺机反击。这种情况下,飞机最重要的性能是最大瞬时盘旋角速度。一般说来飞机的最大瞬时盘旋角速度在马赫数0.4-0.6之间最大,所以要在格斗中争取角度优势,就要求飞机能从最大马赫数尽快地减速至中、低速度。飞机在进行过失速机动时,由于大迎角下自身受到的气动阻力较大,飞机的速度可以迅速降低,有利于偏转机头实施快速对敌指向,或在转弯中尽快减速和改变方向使敌机冲过目标,这在近距格斗中具有很高的空战效能。
然而,在传统的飞行理论中,飞机的迎角是不能够超过失速迎角的,否则就会失速,进入尾旋甚至坠毁。随着现代航空科技的发展,通过采用推力矢量技术等方法,已经使飞机有可能超过失速迎角飞行了。
空战中最频繁发生的是低空和超低空近距空战。近距空战中最重要的作战品质就是迅速瞄准敌机的能力,即在攻击中不仅能快速地改变自身的速度矢量,还能使自己始终处于对手转弯半径的内侧,这样就能使自己更快速地进入攻击位置,先敌开火。过去的空战由于作战飞机的剩余功率较小,因而十分强调抢占高度的机动能力,以达到以高度获取速度的目的。现代战斗机在中等速度下剩余功率都很大,加速性都很好,爬升率都很高,速度上已经没有多大的差距,因此通过过失速机动获取更有力的角度优势,就成为了捷径。
技术内涵
迎角超过失速迎角、在飞行速度很小的状态下,飞机还能处于受控状态,仍能按照有关操纵指令,迅速改变飞行速度矢量和机头指向的一种战术机动。这种过失速机动不需要很大的机动过载,有利于快速发射和回避格斗导弹,有效攻击敌机和保护自己。过失速机动的内涵是:驾驶员拉杆使飞机由常规飞行状态以高俯仰速率作大角度跃升,使其迎角迅速达到30°~40°左右的失速迎角,并在减速过程中使迎角增大到70°左右,此时驾驶仪还能正常操纵飞机绕速度矢量轴滚转或偏航,以便获得快速机头转向或快速机身瞄准能力,随后推杆减小迎角退出失速,转为俯冲增速恢复到常规飞行状态。飞机的常规机动一般是靠控制过载来实现。第三代战斗机的最大过载已经达到9g,受到人的生理限制,其过载已经不可能再增大。而直接力控制等非常规机动的机动能力一般偏小,只适用于作精确瞄准和轨迹修正。因此,在对第四代战斗机研制过程中,提出了过失速机动概念,并将其作为第四代战斗机的特征之一。实际上早在20世纪70年代中期,德国MBB公司就开始研究传统上认为无用的飞行区域、过失速区及在过失速区机动的空战效能。通过理论分析、数字仿真、空战模拟台试飞发现,过失速机动可以显著改善近距格斗能力和减小飞行员对超机动的疑虑,近距格斗中期望的最大失速迎角为70°,并且认为过失速机动必须依赖于推力矢量控制
具有过失速机动能力的飞机应具备两个基本特点:过失速飞机的实际迎角
根据赫伯斯特博士的研究,要进行超机动的飞机必须要满足一系列条件,即其判断准则是:
飞机在俯仰、偏航和滚转三个通道应具有足够的操纵能力,在马赫数低到0.1、迎角达到70°时仍能保持较高的操纵效率,为此需要采用推力矢量控制技术,并且应选用推重比大于1.2的高性能发动机;
飞机需要采用闭环控制和先进的气动布局以便具有的低速、大迎角稳定性;
飞机应能转得快、加减速快,即具有在很短时间内产生很大的瞬时角速度的能力。
1985年6月,美、德合作研制了X-29A、X-31A和 F-18HARV系列验证机,来验证飞机的超机动能力。除X-29A外,其他两型均采用推力矢量控制。这三架飞机都已飞入过失速区,其机动性、敏捷性都有很大的提高。X-29A最大迎角第四代战机迎角60°以上的超机动实战能力。
战术优势
飞行包线得到扩展
随着战场环境日趋恶化,未来战斗机应具有超视距、视距内和近距空战能力,因此对战斗机的作战区域提出了更广泛要求。具有过失速机动能力的战斗机可凭借其高推重比发动机迅速进入超声速区域,进行超视距空战;利用推力反向技术迅速减速至亚声速区,实施视距内空战;通过超机动,使空战速度迅速减小至过失速范围(100km/h左右),在飞行包线以外的区域实施在低速条件下的近距格斗。由此可见空战范围将会向高度和速度的两极发展,其飞行包线会进一步扩展。
能力效率得到提高
近距格斗攻击能力及空战效率进一步提高
在近距格斗时,战斗机瞬时角速度越高,及早发射格斗导弹格斗导弹
同时,过失速机动也使驾驶员节省了体力,提高空战效率。在以往空战中,传统战斗机一般需要作6~8g的急剧机动来跟踪或摆脱敌机,这会使飞行员体力消耗过大,空战效率降低。采用超机动技术战斗机在摆脱敌机时,飞行速度会很小,过载一般为2g左右,驾驶员体力消耗较小,可有充沛体力进行空战。
机动规避效果增强
近距空战的机动规避效果进一步增强
传统格斗空战时,处于被动的一方通常采取急转弯、急剧升降等动作来破坏对方开火条件(未进入有效射程时);或采取急剧减速,迫使敌方前冲,使己方转被动为主动(在有效射程内)。在未来近距格斗空战中,这种战术依然有效,但超机动将使这种战术的运用效果得到极大提高。因为超机动既可成倍增大瞬时角速度,将对方甩在转弯外侧,破坏其开火条件,又能充分利用气动阻力进行突然减速,速度减小到失速速度以下,与对方构成极大的速度差,这样规避战术就能灵活运用。
有效摆脱导弹追踪
摆脱空空导弹追踪更加有效
空空导弹制导体制大致可分为雷达制导红外制导复合制导等方式。对于雷达制导的空空导弹,因超机动时飞机速度急剧减小,对方机载火控雷达会短时间丢失目标,无法继续对空空导弹进行制导,造成导弹失的;对于红外制导的导弹由于超机动飞机突然收小油门和尾部冲前,可使导弹红外导引头接受的红外辐射能量急剧降低而丢失目标;此外飞机超机动时的转弯角速度大,可使近距离跟踪的导弹过载剧增,以致超载而丢失目标。
存在问题
首先,战机超机动能力的实现,除了气动、发动机、推力矢量等技术外,还需要相适应的先进飞控系统及显示系统。因为超过失速迎角、进入失速禁区后,涉及大范围非线性、非定常气动力及强耦合等问题,飞机空气动力特性非常复杂。这种超机动控制技术与常规飞控系统有很大不同,此时飞控系统必须发展成为综合推进一体化系统。同时横向压杆时产生绕速度矢量轴滚转与大迎角时主要绕机体立轴偏航,可能使飞行员产生混淆,不清楚飞机在作什么机动,因此必须采用专门的显示装置。需要与导弹的超机动能力相配合,飞机的超机动能力只有与导弹的过失速能力相配合才能充分发挥其空战优势。
其次,对驾驶员的驾驶技术、战场战机的捕捉提出较高要求。驾驶员需要具备高超的驾驶技术,并且对交战双方态势作出迅速准确的判断,否则战机将稍纵即逝!同时由于只能在较近距离格斗时才能运用超机动,使己方飞机也暴露于敌机火力范围内,遭到敌机攻击的危险性增大。
最后,在超机动时,飞机短时间呈现一种“悬挂”和“滞止”状态,在多机空战中容易受到其他敌机的攻击,因此超机动最适宜一对一的空战,而不适宜于多机作战。同时超机动虽然在快速偏转机头实施对敌指向、或在转弯过程中尽快减速和改变飞行方向,引诱敌机冲过目标等方面非常有用,但大迎角状态下的超机动不利于飞机的航迹机动。
具体实例
美国和德国联合研制的X-31,就是用于进行过失速机动技术验证的验证机。它已经完成过飞行迎角达74度的赫布斯特(Herbst)机动。
最著名的过失速机动则应该是俄罗斯的苏-27飞出的眼镜蛇机动,它曾经让全世界的人震惊。
突破音速被称作突破“音障”;飞行速度提高到马赫数大于3之后,克服了高速带来的高热问题,被称为突破“热障”;如果成功的超越了失速迎角,也就突破了“失速障”。
参考资料
最新修订时间:2024-08-06 22:27
目录
概述
实际运用
参考资料