蒸发量(
evaporation),水由液态或固态转变成气态,逸入大气中的过程称为蒸发。蒸发量是指在一定时段内,水分经蒸发而散布到空中的量,通常用蒸发掉的水层厚度的毫米数表示,水面或土壤的水分蒸发量,分别用不同的
蒸发器测定。一般温度越高、湿度越小、风速越大、气压越低、则蒸发量就越大;反之蒸发量就越小。土壤蒸发量和水面蒸发量的测定,在
农业生产和水文工作上非常重要。雨量稀少、
地下水源及流入径流水量不多的地区,如蒸发量很大,即易发生干旱。
潜水
地表土壤蒸发和作物蒸腾所消耗的
土壤水分中,来自于潜水的那部分水量称为潜水蒸发量。潜水蒸发量是田间
水分循环中的一部分,是
潜水层地下水向土壤水和
大气水转化的一种形式。
意义
宏观意义
蒸发使地面的水分升到空气中,而降雨降雪是空气的水分落到地面上。它们不仅是两个相反的过程,也是相互依存的两个过程。如果地面上的水分不再通过蒸发进入空气中,不出10天地球上再也看不到雨雪了。
蒸发不仅与降水相互依存,它们还与地面的河流有关。在极度干旱的地区,降水量很小。它的实际蒸发量与降水量是相等的。那里的地面上没有河流,连干枯的小河沟也没有。我国的沙漠地区就是这样的。在河流的源头或上游地区,那里的降水量比实际的蒸发是要大。这些多余的水分形成了河流,并且沿着河谷慢慢地流进了海洋或者湖泊。 在任何一个自然流域,它的蒸发、降水与河水流量都是基本平衡的。写成公式就是:任何一个
闭合流域:降入流域的降水量=蒸发量+流出流域河水量。
气象意义
各地气象站都有蒸发量资料,也经常被人们引用。人们往往用降水量和蒸发量的对比数据来说明一个地方是如何的干旱,事实上这种表述存在问题。不少地区提供的
数据都表明,当地的蒸发量远远大于降水量。但如果果真如此,人类早就无法在那里生存了。地球表面地形复杂,在一个地区乃至一个县,往往有荒漠、绿洲和山区多种地形。在山区,降水量远远大于蒸发量;在
沙漠和荒漠中,基本上降多少水,就能
蒸发多少;而在在绿洲,尽管蒸发量大于降水量,由于还有来自山区的
地表径流补充,还是适宜人类生存。
很湿润的地区,气象站测量的蒸发量大约是自然蒸发量的60%。所以利用它粗略分析蒸发量的差别还是可以的。但是在干旱地区气象站测量到的蒸发量与实际蒸发量就有非常严重的偏差。
例如新疆
吐鲁番盆地的
托克逊,气象站测量的年蒸发量是3.7米。有人就说那里的蒸发量大得惊人。然而实际情况是那里的
年降水量不足1厘米厚。所以当地
自然条件下可以提供的蒸发量最多也就是1厘米。这与3.7米就差了370倍。
把气象站测量的蒸发量作为干旱地区的实际蒸发量来描写显然是扭曲了事实。蒸发量实际上是在
蒸发皿中测得的数据,只说明这一地区的蒸发能力,而不是实际蒸发量。气象部门应当把气象站的蒸发量改称为蒸发能力就会减少人们的误会。人们在引用蒸发量数据时首先弄明白它的准确含义也会避免这种误解。
气象学
蒸发是
地表热量平衡和水量平衡的组成部分,也是
水循环中最直接受
土地利用和气候变化影响的一项,同时,蒸发也是热能交换的重要因子。所以,蒸发量在估算陆地蒸发、作物需水和作物
水分平衡等方面具有重要的应用价值。进行蒸发量变化的研究,对深入了解气候变化、探讨水分循环变化规律具有十分重要的意义。就实际而言,对
水利工程设计、农林牧业
土壤改良、土壤
水分调节、
灌溉定额制定以及研究
水分资源、制定
气候区划等方面都具有重要的指导意义。
据
政府间气候变化专门委员会(
IPCC)最新报告,在过去100年中全球气温平均上升了0.6士0.2℃。因此人们预期,全球变暖可能会使大气变干,导致陆地上水体蒸发量上升。而实际结果却与此相反,许多地区的蒸发皿蒸发量呈显著下降趋势。究其原因,国际上相关
专家说法不一。美国著名气候学家Peterson等人将蒸发皿蒸发量下降的现象归因于
云量的增加;Brutsaert等人认为蒸发皿蒸发量的减少是由于地面蒸发量增加的结果;Michael从全球
温度日较差变小的事实出发,在理论上解释了蒸发皿蒸发量的下降主要是由于
太阳辐射量的减少造成;而Stanhill和Cohen则认为云量和气溶胶的增加是In recent years,来全球太阳辐射下降的主要原因。相比而言,我国虽然在蒸发量的计算方面成果较多,但对蒸发量的变化及成因研究较少,许多研究局限于
局部地区,且采用的
测站数据较少,因此很难形成系统全面的理论。
所以,利用大量的台站资料和较长的
时间尺度对我国蒸发皿蒸发量变化趋势及其成因进行研究很有必要。在
国家自然科学基金面上项目和
江苏省自然科学基金项目资助开展的“45年来中国蒸发皿蒸发量的变化特征及其成因研究”中,申双和等人利用中国472个气象站1957~2001年20厘米口径蒸发皿的实测资料,分析了我国
小型蒸发皿蒸发量的变化趋势及其变化原因。
变化趋势蒸发量每十年减少34.12毫米
通过对资料的统计与计算,申双和发现,尽管在这45年间我国年平均气温以每10
年增加0.2℃的趋势递增,可是蒸发皿蒸发量总体上却以每10年减少34.12毫米的速度递减。其中,夏季下降速率及下降幅度最大,为每10年下降15.59毫米,其次为春季、秋季,冬季变化不明显。“这种变化趋势总体上是与全球保持一致的,”申双和解释说,“气温升高主要集中在冬季,而对很多地区来说,占全年蒸发量总量比例较大的夏季气温不升反降,这就导致了全年蒸发量显著下降。”
从地域分布看,蒸发皿蒸发量显著上升只集中在少部分地区,如大兴安岭北部和北山地区;下降幅度最大的地区则集中在东部、西北北部和南部及
西藏南部。
申双和通过对
彭曼公式中能量平衡项和空气动力项进行分析后认为,东部蒸发皿蒸发量的下降主要是因为提供蒸发的能量显著减少,而西部地区蒸发皿蒸发量的下降主要是供蒸发的
动力下降所致。就
气象因子而言,他认为,风弱的时候,气流慢,
蒸发面的
水汽就不易被带到大气中,而日照减少时,蒸发面接受的能量少,水分子动能减弱,水汽扩散也就减慢,这样,蒸发皿的蒸发量就减小。
因此,他提出:造成蒸发皿蒸发量下降的主要原因为风速和日照时数的下降。“
小兴安岭之所以蒸发皿蒸发量增大,主要就是由于这个地区气温显著升高,同时日照、风速没有明显减弱。”他用了一个
反例来说明。
之后,他又通过对各
气象因子进行
趋势分析和
相关分析,进一步证明了这一结论。
可能影响改变水循环和水资源分布
“我国大部地区蒸发量下降”这一事实会对
水循环和农林业等相关领域产生什么影响?申双和解释道,我国大部地区蒸发皿蒸发量减小,已经可以排除是气温下降、地面蒸发量增加和
空气增湿的影响结果,而应该归因于日照减少、风速减弱。因此,蒸发皿蒸发量下降可能会对水循环的分量产生一定影响,例如地面蒸发量减小、大气
水汽输送减弱,同时降水也会发生相应的变化。对
农业生产而言,会导致农田
蒸散减弱、作物
水分利用效率增大,并在一定程度上缓解干旱。另外,我国
东北地区蒸发皿蒸发量有一定的增加,加上气温显著升高,一方面可以扩大农业种植区域,提高
作物产量和森林
固碳及
木材蓄积量;另一方面,由于水分消耗增大,可能对当地水循环和水资源分布产生一定的影响。
测量方法
常用仪器
测量蒸发的仪器常用的有小型
蒸发器、大型蒸发桶和
蒸发皿等几种。
小型蒸发器是口径为20厘米,高约10厘米的金属的圆盆,
盆口成刀刃状,为防止鸟兽饮水,器口上部套一个向外张成喇叭状的金属丝网圈。测量时,将仪器放在架子上,器口离地70厘米,每日放入定量清水,隔24小时后,用量杯测量剩余水量,所减少的水量即为蒸发量。
大型蒸发桶是一个器口面积为0.3平方米的圆柱形桶,桶底中心装一直管,直管上端装有
测针座和水面指示针,桶体埋入地中,桶口略高于地面。每天20时观测,将测针插入测
针座,读取水面高度,根据每天水位变化与
降水量计算蒸发量。
蒸发皿的规格大都和
雨量筒一样,也是20厘米直径的圆形器皿,皿口上沿也高出地面70厘米。蒸发皿深10厘米。正是因为它的厚度小于直径才称为皿。每天向蒸发皿中加进2厘米深的水层,晚上把余水倒进
量杯,量出剩余水深。把20厘米减去剩余水深就是当天的蒸发量。如果当天有雨,余水中还要扣除当天的降水量。这就是蒸发皿的直径和离地面高度都要和雨量筒一致的原因。否则,两者就不能简单相减。
情况处理
在测量蒸发量受到非人为原因或人为原因影响时,人们可以采取以下方法:
1.因降水等自然原因,使蒸发量为
负值(不论负值多少),记为0.0。此情况无需备注。
2.凡因人为原因造成蒸发量为负值,则按缺测处理。
4.夜间不守班的站,第二天早晨发现蒸发皿水(雪)确实外溢,可将皿
内水(雪)倒掉,重新加入20mm的清水,该日蒸发量外加括号,并予注明。
5.考虑到雾、露、霜现象在
蒸发器水(冰)面上与
雨量器金属面上的凝聚状况是不相同的,因此在计算蒸发量中不考虑纯雾、露、霜量。
6.当位于海岛、高山的站确遇蒸发皿水被大风
吹出时,其记录外加括号,并予注明。
7.蒸发器结冰,被冻在冰内的沙土无法清除对,可照常称量记录。但观测后即应换水。
8.没有蒸发专用
台秤,也没有单位为克的普通台秤的站,在蒸发器结冰时,可用以下方法处理蒸发量,以保证旬、月记录的完整。
各结冰日(观测时结冰)的蒸发量栏记“B”,待冰融化的那一天再量取计算这一段的总量,记入观测当日的蒸发量栏。但
结冰期要跨入下一旬时,则须于本旬最后一天的20时,加入一定量的温水将冰融化进行观测,量得的数值中再扣除加入的温水量,计算出的蒸发量记入观测当天的蒸发量栏。上述情况需在簿、表备注栏注明。
9.E-601型蒸发器遇上结冰时,各结冰日的蒸发量栏记“B”,某日冰融化后,测出停测以来的总量,记在该日蒸发量栏内;如果结冰跨入下个月时,待下月融化时测出停测以来的总量,按天
平均分配所得累计值,分别记到Last month最末一天和This month融化日的蒸发量栏内,以求取完整的月计值,此情况在薄表备注栏注明。
由于蒸发量和降水量一样,都是每天20时观测一次,因此测得的日蒸发量,日降水量实际上都是昨天20时到今天20时的量,而不是昨天24时到今天24时的量。
数据处理
蒸发量说明该地的水分支出状况。然而,由于蒸发器本身及其周围空气的动力和热力条件与
天然水体有所不同,蒸发器测得的蒸发量要比
湖泊、水库等实际水体的蒸发量大。因此,蒸发器的
观测值必须乘一个折减系数(一般为0.7—0.8)后,才能作为天然水体的蒸发量。蒸发量的空间变化,受气温、海陆、降水量诸因素的影响。纬度愈低,气温愈高,蒸发能力愈强,蒸发量也就大;在温度相同条件下,海洋上的蒸发量大于大陆,并有自沿海向内陆显著减少的趋势;一般说来,降水量多的地方蒸发量也大,反之,蒸发量小。某地是湿润还是干旱,要看该地
湿润系数K,其公式为K=P/E式中P为降水量,E为蒸发量。K
大于等于1时,表明水分收入大于或等于支出,属于湿润状况;K小于1时,反映水分收入不够支出,属于半湿润、半干旱或干旱。K大小,对
自然景观结构特征的形成有深刻的影响。
自然测量
气象站测量蒸发量的方法简单易行。如果把每天测量蒸发量加起来就得到了全年的蒸发量。全国各地的气象站都这么做。我们也就知道了全国各地的全年蒸发量了。但这种方法有缺点:它不能完全代表自然界真的蒸发量,有时它偏差非常大。蒸发皿的直径太小造成蒸发量偏大。另外自然的
下垫面有的干有的湿,还有沼泽、农田、湖泊或者海洋。这些不同的下垫面的
实际蒸发量显然各不相同。
为了研究不同的自然情况下的蒸发量,人们还选用直径更大的蒸发皿或者测量土壤的蒸发量、水面的蒸发量,农田蒸发量甚至叶面的蒸发量。这些测量蒸发的方法技术比较复杂,成本比较高,只有少数的试验站可以进行。另外,还研究了一些公式也可以间接计算蒸发量。
变化趋势
蒸发量每十年减少34.12毫米。通过对资料的统计与计算,发现,尽管在45年间中国年平均气温以每10年增加0.2℃的趋势递增,但是
蒸发皿蒸发量总体上却以每10年减少34.12毫米的速度递减。研究仅是基于气象台站观测资料的分析,由于城市化后资料的
代表性和可靠性更加受到重视,因此城市的发展(包括建筑增高加密、环境和空气污染等)对风速的减弱、日照的减小、温度的升高等方面的贡献如何,都有待进一步研究。
分布情况
在地球上,各地的地形不同,气候不同,蒸发量的大小也就不一样。中国蒸发量最大的地区是
青海省的
察尔汗盐湖,年平均蒸发量(
蒸发能力)3518毫米。各个大洲的蒸发量从大到小依次为
亚洲、
非洲、
南美洲、
北美洲、
大洋洲、欧洲。
蒸发意义
大自然真是一个奇妙的机器,它既有暴风骤雨也有默默无声
蒸发过程。你想过吗,如果没有了蒸发,天空也就没有了雨水,没有了雨水也就没有了河流,没有了植物和动物。
蒸发过程联系着地面的河流、联系着地球的植被、景观和我们的农业、森林和草场。在进行大规模的
引水灌溉、
南水北调、植树造林和环境保护的时候,应当对每个步骤引起的蒸发量的变化进行了科学的分析。正确认识
蒸发过程和蒸发规律对于保护、利用、改造自然有着非常重要的理论意义和实践意义。