设集合(S,≤)为一
全序集,≤是其
全序关系,若对任意的S的
非空子集,在其序下都有极小元,则称≤为良序关系,(S,≤)为良序集。
2、
整数集在通常序下不是良序集,例如该集合本身就没有一个极小元。
在良序集合中,除了整体上最大的那个,所有的元素都有一个唯一的
后继元:比它大的最小的元素。但是,不是所有元素都需要有
前驱元。作为例子,考虑自然数的一个次序,这里的所有偶数都小于所有
奇数,并在偶数和奇数内应用正常的次序。
如果一个集合可被良序化,
超限归纳法证明技术可以用来证明给定陈述对于这个集合的所有元素为真。
良序定理,等价于
选择公理,声称所有非空集合都可以被良序排序。良序定理还等价于
佐恩引理。
(3)(S,≤)上的所有严格递减序列必定在有限多步骤内终止(假定依赖
选择公理)。
(1)→(2):反设超限归纳法在(S,≤)上不成立,则存在一个性质φ,使得对S中任意元素x,只要φ对S中小于x的任何元素都成立,那么φ对x也成立,然而φ并非对S中所有元素都成立,即S中所有不满足φ的元素组成的集合A是非空集,则A在序关系≤下不可能有最小元素,否则该最小元素应满足φ,矛盾。
(3)→(1)(依赖选择公理):对S的任一非空子集A,用选择公理每次从A中选出一个元素,使得从第二次开始每次选出的元素都比前一次的小,则选出的所有元素构成一严格递减序列,该序列必定在有限步内终止,但序列终止的唯一可能是选出了一个元素x使得A中没有比x小的元素,从而x是A中的最小元素。