拓扑流形,为最容易定义的
流形,它局部看起来象一些“普通”的欧氏空间Rn。形式化的讲,一个拓扑流形是一个局部同胚于一个欧氏空间(或上半欧式空间)的拓扑空间。这表示每个点有一个邻域,它有一个同胚(连续双射其逆也连续)将它映射到Rn(Rn+)。这些同胚是流形的坐标图。
定义
提出
黎曼(Riemann,1826一1866)于1854年更建立黎曼几何,并提出多维拓扑流形的概念。
性质
设M为n维拓扑流形。
M有可数的连通分支,每个连通分支均为M的开集,且为连通拓扑流形。
M的开集为n维拓扑流形。
拓扑空间X为0维拓扑流形,当且仅当X为可数
离散空间。
相关概念
设∂Rn+为Rn+的边界,当φp:U(p)R+时,φ-1p(∂R+)中的点称为M的边界点。由内点不变性(布劳威尔区域不变定理)可知边界点的定义与φP的选取无关,记M的全体边界点之集为∂M,称为流形M的边界,补集IntM=M-∂M称为M的内部。M=∅的流形M称无边流形,否则称为带边流形。n维流形M的边界∂M是n-1维无边流形。紧致无边流形称为闭流形,非紧致无边流形称为开流形。存在连通但非仿紧的拓扑流形,1维这种流形称为长直线,这种流形都不常见且具有较奇异的性质,下面讨论均假定为仿紧
豪斯多夫的,并且具有可数基,因而是
度量空间。
流形
一类特殊的连通、
豪斯多夫仿紧的
拓扑空间,在此空间每一点的邻近预先建立了坐标系,使得任何两个(局部)坐标系间的坐标变换都是连续的。n维流形的概念在18世纪法国数学家拉格朗日的力学研究中已有萌芽。19世纪中叶英国数学家凯莱(1843)、德国数学家格拉斯曼(1844,1861)、瑞士数学家施勒夫利(1852)分别论述了n维欧几里得空间理论,把它视为n个实变量的连续统。1854年德国数学家黎曼在研究微分几何时用归纳构造法给出一般n维流形的概念:n维流形是把无限多个(n-1)维流形按照一维流形方式放在一起而形成的,从此开始流形的拓扑结构及其局部理论的研究。法国数学家
庞加莱在19世纪末把n维流形定义为一种连通的拓扑空间,其中每一点都具有和n维欧氏空间同胚的邻域(被称为庞加莱流形),从而开辟了组合拓扑学的道路。
对流形的深入研究集中在流形上的微分结构与组合结构的存在性、唯一性问题,微分结构与组合结构的关系,流形的各种意义下的分类等问题,20世纪50—60年代做出许多重要结果,近几十年来出现有限维带边流形和无限维流形概念。流形理论在与其他拓扑理论的相互结合发展中也提出许多问题,其研究仍在继续。
在历史上,n维流形的概念在
拉格朗日(Lagrange,J.-L.)时代已初见端倪,
黎曼(Riemann,G.F.B.)于1854年利用参数的观点,对维数用归纳法进行构造,以后
庞加莱(Poincaré,(J.-)H.)为了摆脱这种研究方法的复杂性,把n维流形定义为现在这个样子,即它是一种连通的拓扑空间,其中每点有一个邻域与R(或C)的一个邻域同胚,即把流形定义为局部欧氏空间。这是曲线与曲面概念的高维推广,它是代数拓扑、
微分拓扑、几何拓扑以及微分几何研究的主要对象。
微分流形
设M是仿紧豪斯多夫空间,且是拓扑流形,称A= {(Uα,Фα)|α∈P}是它的地图,如果{Uα|α∈P}是M的开覆盖,Фα是从Uα到n维
欧氏空间R的某开集上的同胚。(Uα,Φα)称为坐标卡。如果两个坐标卡 (Uα,Фα),(Uβ,Φβ) 满足Uα∩Uβ≠Φ,则称Φβ·Фα:Φα(Uα∩Uβ) →Φβ(Uα∩Uβ) 和Φα·Φβ: Φβ(Uα∩Uβ) →Фα(Uα∩Uβ) 为Uα∩Uβ上的坐标变换。如果A的所有坐标变换都是C可微的,则称A为一个C地图,其中1≤r≤∞。r也可等于ω,此时A称为解析地图。拓扑流形M的坐标卡 (U,Φ) 称为与A是Cr相容的,如果任意(Uα,Φα) ∈A,坐标变换Φ·ΦαΦα·Φ均C可微。拓扑流形M的C地图A称为最大的,如果它包含M的所有与之C相容的坐标卡。M上的最大C地图A称为M的C微分结构。(M,A)称为C微分流形,或简称为C流形。当r=∞时,C微分结构也称为光滑结构,C流形也称为光滑流形。r=ω时,C结构也称为解析结构,C流形称为解析流形。C流形(M,A)有时也简记为M。
从直观上看,拓扑流形是局部欧氏空间,局部之间用同胚映射(坐标变换)粘贴在一起。n维C流形,不仅局部同胚于n维欧氏空间,而且局部之间是用C光滑、且其逆也C光滑的坐标变换粘贴在一起。
拓扑空间
拓扑空间是
欧几里得空间的一种推广。给定任意一个集,在它的每一个点赋予一种确定的邻域结构便构成一个拓扑空间。拓扑空间是一种抽象空间,这种抽象空间最早由法国数学家弗雷歇于1906年开始研究。1913年他考虑用邻域定义空间,1914年德国数学家豪斯多夫给出正式定义。
豪斯多夫把拓扑空间定义为一个集合,并使用了“邻域”概念,根据这一概念建立了抽象空间的完整理论,后人称他建立的这种拓扑空间为豪斯多夫空间(即现在的T2拓扑空间)。同时期的匈牙利数学家里斯还从导集出发定义了拓扑空间。20世纪20年代,原苏联莫斯科学派的数学家П.С.亚里山德罗夫与乌雷松等人对紧与列紧空间理论进行了系统研究,并在距离化问题上有重要贡献。1930年该学派的吉洪诺夫证明了紧空间的积空间的紧性,他还引进了拓扑空间的无穷乘积(吉洪诺夫乘积)和完全正规空间(
吉洪诺夫空间)的概念。
20世纪30年代后,法国数学家又在拓扑空间方面做出新贡献。1937年
布尔巴基学派的主要成员H.嘉当引入“滤子”、“超滤”等重要概念,使得“收敛”的更本质的属性显示出来。韦伊提出一致性结构的概念,推广了距离空间,还于1940年出版了《拓扑群的积分及其应用》一书。1944年迪厄多内引进双紧致空间,提出仿紧空间是紧空间的一种推广。1945年弗雷歇又提出抽象距的概念,他的学生们进行了完整的研究。布尔巴基学派的《一般拓扑学》亦对拓扑空间理论进行了补充和总结。
此外,美国数学家斯通研究了剖分空间的可度量性,1948年证明了度量空间是仿紧的等结果。捷克数学家切赫建立起紧致空间的包络理论,为一般拓扑学提供了有力工具。他的著作《拓扑空间论》于1960年出版。近几十年来拓扑空间理论仍在继续发展,不断取得新的成果。
豪斯多夫空间
假设 X 是
拓扑空间。设 x 和 y 是 X 中的点。我们称 x 和 y 可以“由邻域分离”,如果存在 x 的邻域 U 和 y 的邻域 V 使得 U 和 V 是不相交的 (U ∩ V = ∅)。X 是豪斯多夫空间如果任何两个X 的独特的点可以由邻域分离。这时的豪斯多夫空间也叫做 T2 空间和分离空间的原因。
X 是预正则空间,如果任何两个拓扑可区分的点可以由邻域分离。预正则空间也叫做 R1 空间。
在这些条件之间的联系如下。拓扑空间是豪斯多夫空间,当且仅当它是预正则空间和
柯尔莫果洛夫空间的二者(就是说独特的点是拓扑可区分的)。拓扑空间是预正则空间,当且仅当它的柯尔莫果洛夫商空间是豪斯多夫空间。