学科应用数学属于数学一级学科下的
二级学科。应用数学是应用目的明确的数学理论和方法的总称,它是数学理论知识与应用科学、工程技术等领域联系的重要纽带。应用数学主要研究具有实际背景或应用前景的数学理论或方法,以数学各个分支的应用基础理论为研究主体,同时也研究自然科学、工程技术、信息、经济、管理等科学中的数学问题,包括建立相应的
数学模型、利用
数学方法解决实际问题等。
研究方向
研究方向一:非线性偏微分方程
(一)主要研究内容
非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。
⒈非线性偏微分方程的研究:主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;
非线性方程的数值解。
2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的
非线性偏微分方程。
3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。首先提出了对Banach空间中抽象非线性发展方程所描述的
最优控制系统的研究。引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。
(二)研究方向的特色
⒈
变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。
2.该研究是现代数学与电力生产的交叉学科研究课题,它对电力生产及管理有着十分重要的理论指导意义和实际应用价值,为控制系统设计、分析和计算都可提供一些重要的理论依据。在应用数学学科的这一研究领域中本课题属于国内外前沿性研究工作。
(三)可取得的突破
1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。
2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。
3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。
研究方向之二:拓扑学及其应用
(一)主要研究内容
拓扑学是数学的一个重要而比较年轻的学科分支,可以分成
一般拓扑学,
代数拓扑学,
微分拓扑学三个大分支。50年代后期以来,拓扑学的发展及其对数学的发展和其他学科发展起推动作用。本方向主要研究拓扑学中奇点理论、拓扑空间及其映射的性质以及分支理论中的若干课题及应用。
⒈ 奇点理论是微分拓扑学的一个重要分支。20世纪由著名法国数学家R.Thom 开创的奇点理论,经 J.N.Mather,V.I. Arnold 等数学家的杰出工作已取得了巨大的成就。在几何学应用方面,几何微分方程及其几何解方面的应用、应用奇点理论和接触几何研究偏微分方程问题,都取得了十分重要的结果。
致力于这些崭新课题的研究,在
一阶偏微分方程组几何解奇点的分类、奇异解的性质和几何解的实现等方面,做了许多工作,作为第一和第二主要成员参加
国家自然科学基金项目2项,主持省自然科学基金项目1项,主持省教育厅重点基金项目1项,主办小型国际学术活动1次。也取得了一些达到国际先进或国内领先水平的结果。由于这些研究,曾多次应邀参加国际学术会议。获得湖南省科技进步二等奖。将继续这方面的研究。
⒉ Golubistky 等人于1979引入了应用奇点理论研究微分方程分支问题,近年来国内外已经出现了大量的理论和应用研究成果。从一开始就紧跟研究前沿的步伐,用奇点理论研究了几类
非线性边值问题,得到若干关于分支解存在性的结果,并应邀参加国际学术会议进行报告。这方面还有大量的工作可以进行,特别是可以与
电力系统稳定性问题的研究相结合。
⒊ 拓扑空间及其映射的性质是一般拓扑学研究的重要分支之一,主要研究拓扑空间的结构和拓扑空间之间的映射的有关性质。近年来主要研究有关度量空间的映射像的若干性质。并取得了一些引人注目的成果,在国外重要学术刊物上发表或待发表论文多篇。
(二)研究方向的特色
通常在奇点理论中研究Legendrian奇点不考虑对称性,而将等变奇点理论与Legendre奇点的研究结合起来。在对偏微分方程及其几何解的研究和分类研究中,侧重对更一般的方程分类,并试图对分类后几何解的性质的作进一步的研究,这在以往的研究中尚未及开展。特别,近十年来奇点理论应用于偏微分方程的几何理论这一领域中通常研究的是一阶方程,而今后的发展将必然以二阶偏微分方程为趋势,因此研究方向在研究方法、对象等方面都有创新意义和特色。
研究需要将现代拓扑、微分方程与几何、代数相结合,并且还要借助计算机进行计算或验证,反映了现代数学研究不同分支互相参透的综合趋势,体现了数学的统一性,因而具有交叉学科研究性质。
此外拓扑学理论在计算机图形图像的应用在国际上开始的时间不长,还处于起步阶段,可以期待在方法上、理论上有所突破,有所创新。
(三)可能取得的突破
⒈ 在对偏微分方程及其几何解的研究和分类研究中,侧重对更一般的方程分类,并试图对分类后几何解的性质的作进一步的研究。
⒉ 用奇点理论研究
非线性边值问题,争取对边界出现分支的问题取得成果。
⒊ 把对拓扑空间及其映射的性质的研究结果用于研究计算机图形图像及电力和交通工程中的应用问题。
研究方向三:数值方法的研究及其应用
(一)主要研究内容
在当今科学与工程计算中,存在大量的非线性优化、方程的求解、最小二乘和特征值计算等问题。如何借助于现代化的计算工具对这些问题设计出高效的计算方法,并应用于一些实际问题是主要研究内容。
研究工作将集中于下列方面:
1.优化计算方法及其应用:研究约束非线性光滑与非光滑方程的数值求解方法,约束
最优化问题的高效算法,理论上分析所建立数值方法的性质及实际计算表现。由于电力系统中的安全与稳定性可用
非线性方程系统和优化模型描述,将运用数学上新的数值方法分析电力系统的安全和稳定性,以适应电力系统市场化改革的需要。
2.应用数值线性代数(也称矩阵计算)问题:它是科学与工程计算的核心,主要涉及三大问题:线性代数方程组问题,线性
最小二乘问题和特征值问题。的研究工作将集中在大型
线性方程组并行算法、病态方程组的预处理方法、结构矩阵的特征值和最小二乘问题的快速算法等方面。
3.约束矩阵方程问题:约束矩阵方程问题包括矩阵逆特征值问题、矩阵最小二乘问题、矩阵扩充问题及其最佳逼近问题等。将研究约束矩阵方程的可解性,解的性质,数值方法及在结构设计、动力系统模型修正等许多工程实际中的应用。
(二)研究方向的特色
1.在最优化计算方法的研究中,均考虑了约束情况,不仅使问题有一般的结构,且更符合实现应用背景。另外,电力系统安全稳定的应用分析,对推动当前电力工业的改革具有重大的现实意义。
2.矩阵计算所研究的内容与许多工程问题密切相关,尤其在信号处理方面,经常碰到大规模问题、病态问题和结构矩阵问题。因此,研究无论在理论还是应用都很重要。
3.约束矩阵方程的研究既利用了矩阵理论的矩阵分块、分解和降阶等技术,又提出了新的矩阵和矩阵理论。
(三)可能取得的突破
1.建立约束非光滑方程系统的具有
超线性收敛的数值方法;对大规模约束非线性优化问题根据解耦方法建立高效且有理论保证的算法;运用新的数学方法实现电力系统安全稳定运行中的可用输电能力、阻塞管理等问题的在线分析。
2.程应用中经常出现的一些特殊的矩阵计算问题设计有效的快速算法,并从理论上进行分析,形成高水平的学术成果。
3.新的矩阵集合约束下的矩阵方程或新类型矩阵方程的解的相关问题;提出新的高效数值方法;用已有的约束矩阵方程理论解决某些工程实际问题。
(四)主要学术带头人简介
童小娇:教授,博士,主要从事非线性方程系统和非线性优化问题数值方法、电力系统安全稳定性的研究。先后主持或参加了
国家自然科学基金、湖南省自然科学基金、湖南省教育厅优秀青年等多项课题的研究,并参加了国家973项目《中国大电力系统灾变防治与经济运行若干重大问题的研究》的工作,近6年来在重要刊物上发表论文30多篇。
研究方向四:概率论与数理统计
(一)主要内容
在
马尔可夫过程、随机分析、数理金融、应用数理统计等领域具有较厚的研究基础,取得了大批在国内外颇具影响的重要研究成果。特别是李应求教授及其领导的课题组在两参数马氏过程、随机环境中的马氏链及分支过程和相关函数方程等方向上的科学研究;以及在 IC卡操作系统、IC卡应用集成技术的研究方面,在人力资源管理、电力负荷预报、交通随机模型、金融风险模型等领域取得了卓有成效的应用。研究工作将主要集中于下列方面:
1.随机环境中马氏链理论的研究:随机环境中马氏链是当代随机过程研究的热点,已取得了丰富的成果,但这些工作都有待深入和拓展。在这方面主要研究其一般理论如不可约性、常返性、瞬时性及其相应的链的性质,大偏差理论,遍历理论,有关开问题等;一些具体过程如随机环境中分枝过程、随机游动、单生链、超过程等的性质。在这方面的研究将进一步完善随机环境中马氏过程的整个理论体系。
2.两参数马氏过程理论研究:两参数马氏过程是当代随机过程研究的另一热点,已取得了丰富的成果,但研究进展缓慢,特别是两参数马氏过程样本轨道性质的研究。究其原因主要是由于此时过程的时间参数无全序关系,在单参数马氏过程研究中使用的首达时、
无穷小算子等的方法已无法借鉴,需要引进新的概念和方法,但在此方面仍无突破性进展。
3.应用研究:课题组已成功地将概率统计应用于广西电力局短、中、长期
电力负荷预测及其所属的桂林电力局短、中、长期电力负荷预测,取得了很好的经济效益和社会效益,将总结经验,继续做好这方面的应用研究。此外,正开展将概率统计应用于人力资源管理方面,图像处理方面和金融等国民经济领域中的应用研究。
研究方向之五:实、复分析理论及应用
(一)主要研究内容
本方向主要研究实、复分析中的几何函数论,亚纯函数的值分布论以及调和分析中的若干课题及应用。
⒈几何函数论是一个经典的研究领域,曾经吸引了许多数学家的高度关注。自上世纪七、八十年代以来,随着卷积理论、微分从属、分数次微积分算子以及极值点、支撑点理论的应用,几何函数论的研究又重新焕发了青春。致力于这些崭新课题的研究,在卷积算子、微分从属、分数次微积分算子与
单叶函数论的结合研究方面,做了大量工作,也取得了许多重要结果,曾获得湖南省优秀自然科学论文一等奖。将继续这方面的探索,并已在将有关结论向
拟共形映射和
多复变函数拓广方面做了一些工作。
⒉亚纯函数的值分布论自上世纪二十年代创立以来,一直是复分析研究中的一个热门课题。特别是近一、二十年来,关于亚纯函数的唯一性理论,微分方程的复振荡理论更是吸引了众多数学工作者的关注。从一开始就紧跟研究前沿的步伐,在亚纯函数的4值问题的研究方面取得了突破性进展,在将亚纯函数的唯一性与微分方程的复振荡的结合研究方面,做了一些尝试性的工作。
⒊调和分析是分析数学的主要分支之一,它主要是利用分析的工具研究函数空间的结构和积分算子在函数空间上的有界性,交换子就是其中的一类重要算子。由于交换子可用于刻画某些函数空间,并在微分方程理论中有许多重要应用,因此研究与各种积分算子相关联的多线性算子(交换子的非平凡推广)在各类函数空间中的有界性,就成为近些年来十分活跃和热门的研究课题。主要研究关于多线性算子的加权有界性,多线性算子在Hardy空间和Herz空间的有界性等等,并取得了一些引人注目的成果,在国内外重要学术刊物上发表论文多篇。
⒋复分析理论在交通、电力工程中的应用。曾经应用复分析理论研究了路面温度场的问题,解决了一个弹性体中的温度应力分布问题,以此研究作为一个子课题的“七﹒五”攻关项目曾获得交通部科技进步一等奖。将继续开展这方面的研究工作。
(二)研究方向的特色
⒈几何函数论与微分方程、特殊函数的结合研究,共形映射与
拟共形映射的结合研究,可以突破一些技术难关,从而能更为有效的获得一些经典的结果和新结果,创立一些新方法。
⒉亚纯函数的唯一性理论与微分方程的复振荡研究的结合,有可能获得微分方程复振荡理论的一些新结果。
⒊关于多线性算子的各种有界性的研究,是调和分析中的一个最新研究课题。
⒋着眼于上述几个分支的相互关联、相互渗透关系的探索与研究,以期从一个更高的角度来从事相关课题的研究,从而在方法上,理论上有所突破,有所创新。
(三)可能取得的突破
⒈深化微分从属与单叶函数的结合研究的理论与应用,并由此解决
单叶函数论中的几个难题。
⒉将亚纯函数的唯一性理论应用于微分方程的复振荡理论的研究,获得其振荡性质的新结果。
⒊获得若干多线性算子在一些函数空间上的有界性结果。
研究方向之六:代数学及应用
(一)主要研究内容
代数学是数学的一个重要的基础分支。传统的代数学有群论,环论,模论,域论,线性代数与多重线性代数(含矩阵论),有限维代数,同调代数,范畴等。代数学的发展有几个特征:其一是与其它数学分支交叉,例如与几何,数论交叉产生了代数几何,算术几何,代数数论等数学主流方向,矩阵论与组合学交叉产生了
组合矩阵论。其二是代数学与计算科学,计算机科学的交叉,产生了计算代数,数学机械化,代数密码学,代数自动机等新的方向。随着计算科学的发展,矩阵论仍处在发展的阶段,显示出其生命力。其三是一些老的重要代数学分支从代数学中独立出来形成新的数学分支,如李群与李代数,
代数K理论。而一些老的代数学分支(如环论)己不是热点了。
1.矩阵几何及应用:矩阵几何的发展主要有三个方面:一是将矩阵几何的研究推广到有零因子的环上; 二是将矩阵几何基本定理中的条件化简或寻找其它等价条件,并找出特殊情况下的简单证明;三是将矩阵几何的研究范围扩大到保其它的几何不变量以及无限维算子代数中。近几年的研究重点在环上矩阵几何与算子保持问题。
2.环上矩阵论及应用:四元数与四元数矩阵论在物理学,力学,计算机科学,工程技术中具有较好的应用,受到国内外工程技术界的重视。矩阵方程在很多实际问题(例如控制论, 稳定性理论)中有重要的作用,也是长期的研究热点。将研究环上矩阵论与四元数矩阵论的一些尚未解决的重要问题,带约束条件的矩阵方程求解理论,并讨论它们在实际问题中的应用。
3.群论及应用:群论是代数学的基础,也是物理学的基本工具。典型群是群的一种很重要的类型。将研究环上典型群的一些重要问题,用群的算术条件(如:群的阶及元素的阶,特征标次数,共轭类长等)刻画群的结构,并对它们进行分类。研究数域或整数环上一般线性群的有限子群,用群的某些算术条件刻画群的结构并对其进行分类。
4.Clifford代数,Hopf代数及应用:Clifford代数,Hopf代数已成为物理学中的热门工具。二维Clifford代数就是四元数。研究Clifford代数, Hopf代数的一些重要的问题,并讨论它们在实际问题中的应用。
5.代数学在计算机科学与信息科学的应用:随着信息化进程与因特网的深入与飞速发展,信息安全问题日益重要,保护网上信息安全是一个重要的新课题。主要采用加密技术与数字鉴定,实际上是数学技术,主要用到代数学,组合数学与数论。图像压缩处理是信息处理中的一个困难和重要的问题,在代数学方面有较好的基础。
(二)研究方向的特色
1.矩阵几何是数学大师华罗庚开创的一个数学研究领域,并由中国数学家万哲先院士等继承和发展,属于代数几何的范畴,“具有中国特色”。在此领域的研究处于国内较高水平。
2.随着计算机科学的发展,环上矩阵论成为重要的数学工具,也是今后代数学研究的重要方向之一。
3.随着互联网的迅猛发展,信息安全日益重要,而近年来代数自动机是计算机科学与代数学交叉的一个研究方向。因此,它们的基础理论研究特别重要。
(三)可取得的突破
继续保持矩阵几何与矩阵论研究的国内较高水平,根据本院的实际情况,发展群论,Clifford代数,Hopf代数,代数自动机,代数密码学等新的研究方向,争取在这些新的方向上得到一些有学术影响的成果。
学科案例
总的来说,人们乘坐的先进、舒适的大型喷气客机的设计就离不开数学:机翼和机身通过分析计算才能确定它们的最佳形状;飞机的结构通过数学严格的校验才能确保有足够的强度;
飞机发动机事先要用数学方法对其气动和机械性能进行分析和优化才能确保安全高效地运行、……。
如今数学不仅在各门自然科学和制造业、信息业、服务业等各种行业中有广泛的应用,而且在国民经济的规划和预测,自然资源的勘探、开发和保护,交通和物资调配,
气象预报和各种灾害的预报、防治以及医学和社会科学的许多领域中乃至日常生活中都显示出举足轻重的作用。这一切促使人们对数学的重要性有了新的和更加深刻的认识。
在这样的背景下,以计算机为工具、应用数学知识解决实际问题的能力将成为新世纪青年重要的科学素质。青年学生应自觉提高这方面的能力,迎接未来的挑战;数学教育工作者也应加强这种素质的培养。
用数学解决实际问题除了掌握必要的数学基础知识以外还必须具备一定的能力。这里,需要将现实问题归结为数学问题(又称建立数学模型或数学建模),然后选择合适的数学方法加以求解;对求得的结果用适当的方法加以验证;最后将结果应用于现实问题,对某些现象加以解释,或作出预测,或用于设计,或控制某个过程等等。这些能力不是天生的,也不是单纯通过学习数学基础知识就能获得的,只能通过有意识的反复训练和实践才能获得。然而以往的数学教学在这方面是欠缺的,有必要加以改革和完善。
1991年开始,上海市青少年科技教育中心(当时的上海市青少年科技指导站)和上海市工业与应用数学学会决定举办上海市中学生数学知识应用系列活动作为对高中数学教学的改革和补充的一种探索,并从那一年开始,每年举行一次中学生数学知识应用竞赛。这项活动每年都有5000多名中学生参加,至今已连续开展了14年。
上海市中学生数学知识应用竞赛分初中组和高中组。高中组的主要活动包括初赛(开卷)、决赛(闭卷)、夏令营活动和小论文竞赛等。通过竞赛和撰写应用
数学小论文使学生亲身经历了解决实际问题的全过程,在问题的发现、数据的采集、数学模型的建立、数学问题的求解、结论的验证、论文的写作、论文的答辩等过程中各种能力得到了全面的提高。学生们的参赛论文中洋溢着创新精神,其创造性思维令人鼓舞。从中选拔出来的优秀论文多次在国内外获奖。作为竞赛活动的一个组成部分,从1997年起组委会先后组织辅导了二十多支中学生队参加了美国大学生数学建模竞赛,并取得了优异成绩。
上海市中学生数学知识应用竞赛系列活动在国内外产生了很大的影响,有的学校已把开展应用数学活动、培养学生的综合素质作为一项课题进行研究,更多的学校已把应用数学或数学建模作为研究型选修课程,甚至成立应用数学特色学校。
研究生排名
·第1名
纽约大学 - New York University
·第2名
麻省理工学院 - Massachusetts Institute of Technology
·第3名
加州大学,洛杉机分校 - University of California,Los Angeles
·第3名
加州理工学院 - California Institute of Technology
·第5名
明尼苏达大学,双城校区 - University of Minnesota,Twin Cities
·第6名
布朗大学 - Brown University
·第7名
加州大学,伯克利分校 - University of California,Berkeley
·第7名
普林斯顿大学 - Princeton University
·第9名
德克萨斯大学,奥斯汀分校 - The University of Texas at Austin
·第9名
斯坦福大学 - Stanford University
·第11名
密西根大学,安娜堡分校 - University of Michigan,Ann Arbor
·第12名
马里兰大学,帕克分校 - University of Maryland,College Park
·第12名
卡内基美隆大学 - Carnegie Mellon University
·第14名
佐治亚理工学院 - Georgia Institute of Technology
·第15名
康乃尔大学 - Cornell University
·第16名
华盛顿大学 - University of Washington
·第17名
芝加哥大学 - University of Chicago
·第18名
莱斯大学 - Rice University
·第19名
普渡大学,西拉法叶校区 - Purdue University
·第19名
亚利桑那大学 - University of Arizona
·第21名
威斯康星大学,麦迪逊分校 - University of Wisconsin,Madison