太空(英语:Space),汉语字典解释是极高的天空。地球
大气层以外的宇宙空间,大气层空间以外的整个空间。位于
瑞士日内瓦的
国际航空联合会定义了大气层与太空的界线:以离地球海平面100千米(约62英里)的高度为分界线,称为
卡门线。卡门线以美国科学家
西奥多·冯·卡门的名字命名。
科学探秘
太空站又称为“空间站”、“轨道站”或“
航天站”,是可供多名宇航员巡航、长期工作和居住的载人航天器。在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或
航天飞机运送,物资设备也可由无人航天器运送。1971年
前苏联发射了世界上第一个太空站——“礼炮”1号,此后到1983年又发射了“礼炮”2—7号。1986年前苏联又发射了更大的太空站“和平”号。美国1973年利用“阿波罗”
登月计划的剩余物资发射了“
天空实验室”太空站。
太空旅游
太空旅游是到太空去旅游。太空游项目始于2001年4月30日。第一位
太空游客为美国商人丹尼斯蒂托,第二位太空游客为
南非富翁
马克·沙特尔沃思,第三位太空游客为美国人
格雷戈里·奥尔森。
聂海胜就是其中的一位。
太空行走
太空行走(Walking in space)又称为出舱活动,即航天员在载人航天器之外或在
月球和
行星等其他天体上完成各种任务的过程。它是载人航天的一项关键技术,是
载人航天工程在轨道上安装大型设备、进行
科学实验、施放卫星、检查和维修
航天器的重要手段。要实现太空行走这一目标,需要诸多的特殊技术保障。
太空探索
1957年10月4日,前苏联第一颗人造卫星上天,拉开了人类
航天时代的序幕。前苏联宇航员、大名鼎鼎的
加加林,于1961年4月12日,乘坐前苏联“
东方号”飞船,环绕地球飞行了一圈,历时近两个小时,成为第一位进入太空的人。
登月
月球是距离地球最近的天体(约38万公里),是人类进行太空探险的第一站。前苏联1959年发射的
月球2号探测器在月球着陆,这是人类的
航天器第一次到达地球以外的天体。同年10月,
月球3号飞越月球,发回第一批月球背面的照片。1970年发射的
月球16号着陆于丰富海,把100克月球土壤送回了地球。
美国在20世纪60年代开始的雄心勃勃的“阿波罗”计划的目的就是将人类送上月球进行实地考察。在此之前的1961年到1967年间,9个“徘徊者”、7个“勘测者”探测器和5个月球
轨道器先后对月球进行了考察。它们拍摄了月球的照片,并分析了月球的土壤,为登上月球做好了准备。随后美国便使用“土星”5号运载火箭先后向月球发射了17艘“阿波罗”飞船。其中“阿波罗”1-3号是试验飞船,4-6号是无人飞船,7号飞船载人绕地球飞行,8-10号载人绕月飞行,11号至17号是载人登月飞行。
1969年7月16日发射的
“阿波罗”11号使人类首次登上了月球。执行该次任务的是
阿姆斯特朗、阿尔德林和
柯林斯。飞船抵达
月球轨道后,柯林斯驾船绕月飞行,另两名宇航局驾驶登月舱于7月20日降落在月球表面的
静海。阿姆斯特朗成为第一个登上月球的人。宇航员在月球表面进行了实地的科学考察,并把一块金属纪念牌和
美国国旗插上了月球。此后又有5次成功的登月飞行,宇航员在月球上停留的时间总共约300小时。
此后对月球的考察几乎停滞,直到1994年,美国又发射了“克莱门汀”号无人驾驶飞船,对月球进行了新的地貌测绘,其目的是为在不久的将来建立
月球基地和
月基天文台作准备。1998年1月6日发射升空的“月球勘探者”携带有
中子光谱仪探测氢原子。它发现在月球
两极的盆地底部存在水。
金星和水星
金星的
半径、
质量、
密度等与地球接近,是地球的姐妹行星。人们对它的兴趣很大,然而,地面观测所得的资料比较贫乏,对金星的研究充满了未知数。航天器可以使人们了解它更多的信息。虽然最初的几次探测器发射都失败了,但1962年美国发射的
水手2号从距金星35000千米处飞过,成功地实现了航天器首次飞越行星,同时它发现金星
表面温度高达400多度。1969年至1981年,前苏联的
金星5号至14号探测器先后在金星表面着陆成功,执行了多项科学考察任务。美国1978年5月20日发射的先驱者-金星1号经过长距离飞行,于同年12月4日到达金星并围绕它飞行,它用雷达探测了金星地形。先驱者-金星2号到达金星后向金星大气释放了4个探测器,探测器在向金星表面坠落的过程中,获得了金星大气、云层、
磁场等各方面的数据。1989年美国发射的“
麦哲伦号”探测器又运用
综合孔径雷达对金星表面进行了探测。这些探测使我们了解到金星的磁场很弱,表面气压是地球海面气压的90倍。金星12号还探测到了闪电。
美国发射的“
水手10号”飞船在考察了金星之后,曾3次飞临
水星。是它发现了水星的磁场和磁层,并探测出水星大气的主要成分是氦。飞船上的两个摄像机拍摄了多幅图像,揭示出水星地形是由大量的
陨石坑和盆地组成的。
火星任务
火星很像地球,有坚硬的表面和四季的交替。同时它还拥有随四季变化的极冠。在望远镜观测时代,人们还曾有认为火星上有人工的运河。人类对火星的兴趣一直是非常浓厚的,因此到如今已经20多艘飞船执行了探测火星的任务了。1962年前苏联发射了“火星1号”、“宇宙21号”,美国发射了“水手3号”,但均遭到了失败。1964年1月28日发射的“水手4号”于1965年7月14日在距离火星的一万公里的高空成功掠过,获得了第一批火星的照片。1974年,前苏联发射的“火星5号”
宇宙飞船首次拍摄了火星的彩色照片。随后两国又相继发射了多个绕火星飞行的轨道器,更加详细地了解了这颗行星的情况。
1976年,美国的
海盗1号和
海盗2号登陆器分别在火星上降落,并在降落的过程中,测量了大气温度的分布情况、火星大气压的情况。火星上有干涸的河床,有
流水冲击的特征,这表明在过去有过大量的水。海盗号飞船的分析结果表明火星大气和表层物质中没有有机分子存在。摄像机监视结果也表明火星上没有生命活动的迹象。因此我们也许可以下结论说,火星表面如今可能没有生命,如果更严格地说,是没有与地球上类似的生命。人们不仅对火星感兴趣,也对火星的两个卫星感兴趣。在1988年,7月7日和7月12日,前苏联发射了火卫飞船1号和2号绕
火卫一飞行并着陆。
到最近几年,随着科技的飞速发展,人们可望在下世纪初直接登上火星进行实地考察,彻底弄清火星生命问题。因为它是太阳系中最有可能存在生命的星球。在人类踏上火星之前,将进行一系列的准备。
1993年美国“
火星观察者”探测器在进入环绕火星的轨道之后,与地球失去联系,导致计划失败。1996年12月,美国又发射了“
火星探路者”探测器,经过7个月的星际飞行,在火星的阿瑞斯平原着陆。火星探路者携带了一个六轮小车,可以在火星的表面漫游,因而叫做火星漫游者,价值2500万美元。它分析了火星岩石和土壤。照片证实了海盗号的结论,火星上曾发生过大洪水。
1996年11月美国发射了“
火星全球勘测者”,在绕火星的轨道上研究火星表面、大气和磁场的情况。它还向地球发射无线电波,经过火星大气后到达地球,由此了解火星大气的温度、引力和化学组成。1999年1月3日,“
火星极地着陆者”发射成功。然而,在飞行了11个月并登陆到火星上以后,就与地面失去了联系,宣告了这次航天活动的失败。此后发射的火星
气候观测器也遭失败。2001年,美国又发射了“火星奥德赛”探测器,现已成功抵达火星并成功进入环火星轨道。
欧洲空间局计划于2003年发射“火星快车”探测器考察火星,这标志着欧洲空间局在
行星探测方面跨入了新纪元。它将由轨道器和着陆器组成。轨道器上有一个着陆器通信包用于支持国际上在2003年至2007年间开展的火星探测活动。
带外行星探测
美国的“
先驱者10号”于1973年12月4日首次在掠过木星,并传回了木星和木卫的照片。它最后在1983年越过
海王星轨道后成为飞出太阳系的第一个
人造天体。接着“
先驱者11号”、“
旅行者1号”、“
旅行者2号”也相继飞越
木星和木卫。
“先驱者”10号、11号各自携带了一块相同的镀金铝板,上面刻有人类男女的裸像,以及太阳与
九大行星位置的
示意图,还指明了它来自太阳系的第三颗行星。“旅行者”1号和2号探测器,则各自带有一套“
地球之声”的光盘,唱片上有照片、60种语言的问候语、35种各类地球上的声音和音乐。包括了中国长城和中国人家宴的照片,粤语、厦门话和客家话的问候,和中国古曲“流水”。它们作为地球的名片希望有朝一日能被“外星人”收到。
从
旅行者号拍摄的木星黑夜半球的图象上可以看到木星上有
极光。有趣的是,
木卫一上有一座正在喷发的
火山,喷发的高度达到30公里,喷发速度是每秒几百米到1公里。“旅行者”飞船还发现了
土星有射电辐射,频率在3千赫到1.2兆赫之间。1986年1月,“旅行者2号”飞船又测出
天王星的
自转轴和磁轴有很大的交角。飞船还拍摄了
天王星卫星的照片,随后它又拜访了海王星,并发回了照片。
“伽利略”号的任务是观测木星系统,它观测了木星的
大红斑,还向木星云层释放了一个探测器。这个探测器依靠降落伞进入木星大气,在它被巨大的木星
大气压力摧毁前向地球传回了许多宝贵的资料。“伽利略”号对
木卫二和
木卫四的观测的结果还显示这两个
木星卫星的表面之下可能有液态水海洋。有液态水存在就意味着可能有生命生存,这无疑是一个令人振奋的消息。
美国于1997年10月15日发射了“
卡西尼”号飞船,它是第一艘使用核动力电池的飞船。“卡西尼”号的主要任务是探测
土星系统,并将向土星最大、最神秘的卫星——
土卫六释放出一个名为“
惠更斯”的探测器。土卫六是一个被浓厚的大气包裹着的星球,其环境与早期的地球有些类似,使用一般观测手段无法看清它的表面。“卡西尼”号将于2004年七月抵达土星系。
此外美国宇航局还计划进行更多的行星探测计划,以便更多地了解我们生存的太阳系。其中包括向木卫二发射一个探测器,用以探测
木卫二隐藏在冰层下的巨大液态水海洋。如果技术成熟,有可能向木卫二表面释放一个水下探测器,找寻可能存在的
地外生命。
彗星和小行星
宇宙飞船不仅仅用于对太阳系内的
大行星及卫星进行近距离观察。1985-1986年哈雷
彗星回归过程当中,有5艘飞船对它进行了近距离观测,有许多令人惊奇的发现。例如,
哈雷彗星的核并非人们想象的球状,而是椭球状,气体和尘埃从核的表面几个活动区域喷出。
欧洲空间局的计划中,已经或即将开始对7个
短周期彗星进行空间探测。它们是“深空1号”(DS1)计划、“星尘”计划、“等高线”计划、“罗塞塔”计划、“深空4号”(DS4)计划。其中DS1和DS4计划是与美国国家宇航局合作的。
于1998年10月发射的“深空1号”飞船,将飞越
小行星3352号McAuliffe、火星、以及威尔逊-哈林顿彗星。飞船与彗星将于2000年6月相遇。DS1将以约15公里/秒的速度距
彗核约500公里处飞过,对
彗发、彗核进行观测。它首次采用了
离子发动机。飞船于2010年5月将样品送回地球。
“星尘”在1999年2月发射,飞向怀尔德-2彗星,并将首次带回珍贵的彗星样品。
“罗塞塔”将于2003年发射,对Wirtanen彗星及其环境进行长达近两年的仔细研究。9年之后,飞船与彗星相遇,总重20公斤的仪器将降落在彗星表面。这些仪器将采掘彗星表面和近表面样品进行研究,并用
声波法探测彗星内部结构,研究周围
等离子体与
太阳风相互作用等。
“深空4号”飞船将于2003年4月发射,于2005年12月进入环绕Tempel 1彗星的轨道,并于2006年4月将着陆器送上彗星表面作实验。最后,将彗星表面下不同深度的物质分装在3个不受外界影响的密封
金属罐内,由着陆器的上半部将样品送回飞船。飞船于2010年5月将样品送回地球。
空间科学研究
1946年,
美国用缴获的德国V-2火箭将一支果蝇送入太空,成为第一个生物火箭。1957年,前苏联发射了世界上第一颗人造卫星'史泼尼克一号。空间站是人类在太空进行各项科学研究活动的重要场所。1971年,前苏联发射了第一座空间站“礼炮”1号,由“联盟”号飞船负责运送宇航员和物资。1986年8月,最后一座“礼炮”7号停止载人飞行。1973年5月14日,美国发射了空间站“天空实验室”,由“阿波罗”号飞船运送宇航员和物资。1974年天空实验室封闭停用,并于1979年坠毁。
1986年2月20日,前苏联发射了
“和平”号空间站。它全长超过13米,重21吨,设计寿命10年,由工作舱、过渡舱、非密封舱三个部分组成,有6个对接口,可与各类飞船、航天飞机对接,并与之组成一个庞大的轨道联合体。自“和平”号上天以来,宇航员们在它上面进行了大量的科学研究。还创造了太空长时间飞行的新纪录。“和平”号超期服役多年后于2001年3月19日坠入太平洋。1983年,欧洲空间局发射了“
空间实验室”,它是一座随航天飞机一同飞行的空间站。
国际空间站是建造中的新一代空间站。它由美国和俄罗斯牵头,联合欧洲空间局11个成员国和日本、加拿大、巴西等16国共同建造运行。空间站从1994年开始分多个步骤建设安装,至2006年全部建成。建成后空间站将长110米,宽88米,质量超过400吨,将是有史以来规模最庞大、设施最先进的人造天体。可供6至7名宇航员同时在轨工作。
1981年全世界第一颗
红外天文卫星发射升空。而对于天文学上有重要意义的事件是1990年4月25日由美国
“发现”号航天飞机送入太空的
哈勃空间望远镜(HST)。它的目的是探测宇宙深空,了解
宇宙起源和各种天体的性质和演化。HST耗资21亿美元,对天文学特别是
天体物理学的推动是巨大的。在空间放置望远镜可以摆脱大气的干扰,没有
大气消光的问题,同时因为没有大气,设计的望远镜可以达到衍射极限。它的镜面不受重力的影响,不会变形,望远镜有极高的分辨率。它是人类的千里眼,
探索宇宙奥秘的利器。此后美国和
欧空局又相继发射了“
钱德拉”空间
X射线望远镜和XMM空间天文台等。
美国的航天飞机是当前世界上唯一一种用于在地面和
近地轨道之间运输人员物资,并可重复利用的航天器。它也可以在太空中进行各种科学实验活动。
中国航空
中国1964年7月19日,成功发射了一枚
生物火箭。1966年10月27日,导弹核武器发射试验成功。1970年4月24日在
酒泉发射了我国第一颗
人造地球卫星“
东方红1号”。1975年11月26日,发射了一颗返回式人造卫星。1980年远程运载火箭发射成功。2年以后,
潜艇水下发射运载火箭获得成功。1984年4月8日,我国第一颗
地球静止轨道试验通信卫星发射成功。1986年2月1日,我国发射了一颗实用通信
广播卫星。1988年9月7日,中国发射了一颗试验气象卫星“风云1号”。1999年11月20日,在
酒泉卫星发射中心用运载火箭成功发射了第一艘“神舟号”试验飞船。2003年10月15日9:00,中国发射了第一艘载人飞船“
神舟5号”,飞船在太空中飞行了21小时,绕地球运行14周后,于16日清晨6:23安全返回地面。宇航员
杨利伟成为第一个乘坐中国人自己的飞船进入太空的中国人。展望未来,在2010年以前,中国的宇宙飞船将访问
月球。2011年9月29日21时16分3秒,中国将建立自己的空间站
天宫一号发射升空。之后,中国将进一步开展
月球探测、建设
月球基地、探测火星、
登陆火星等一系列航天活动。
环境
自
宇宙大爆炸以后,随着宇宙的膨胀,温度不断降低,当前,太空已成为高寒的环境,平均温度为零下270.3℃。
在太空中,各种天体也向外辐射电磁波,许多天体还向外辐射
高能粒子,形成
宇宙射线。如太阳有
太阳电磁辐射,
太阳宇宙线辐射和太阳风,太阳宇宙线辐射是太阳在发生耀斑爆发时向外发射的高能粒子,而太阳风则是由
日冕吹出的高能等离子体流。
许多天体都有磁场,磁场俘获上述高能带电粒子,形成辐射很强的辐射带,如在地球的上空,就有内外两个辐射带。由此可见,太空还是一个强辐射环境。
太空还是一个
高真空,微重力环境。重力仅为百分之一到十万分之一g(g-
重力加速度),而人在地面上感受到的重力是1g。
自20世纪50年代开始进军宇宙以来,人类已经发射了4千多次航天运载火箭。据不完全统计,太空中现有直径大于10厘米的碎片9千多个,大于1.2厘米的有数十万个,而漆片和
固体推进剂尘粒等微小颗粒可能数以百万计。
太空垃圾由于飞行速度极快(6-7公里/秒)蕴藏着巨大的杀伤力,一块10克重的太空垃圾撞上卫星,相当于两辆小汽车以100公里的时速迎面相撞,卫星会在瞬间被打穿或击毁。试想,如果撞上的是载人宇宙飞船……而且人类对太空垃圾的飞行轨道无法控制,只能粗略地预测。太空垃圾对于宇航员和飞行器来说都是巨大的威胁。
当前地球周围的宇宙空间还算开阔,太空垃圾在太空中发生碰撞的概率很小,但一旦撞上,就是毁灭性的。更令航天专家头疼的是“雪崩效应”——每一次撞击并不能让碎片互相湮灭,而是产生更多碎片,而每一个新的碎片又是一个新的碰撞危险源。如果有一天,等地球周围被这些太空垃圾挤满的时候,人类探索宇宙的道路该何去何从呢?
太空垃圾是人类在进行航天活动时遗弃在太空的各种物体和碎片,它们如人造卫星一般按一定的轨道环绕地球飞行,形成一条危险的垃圾带。太空垃圾可分为三类:一是用现代雷达能够监视和跟踪的比较大的物体,主要有种种卫星、卫星保护罩及各种部件等,这类垃圾当前已达8000多个;二是体积小的物体,如发动机等在空间爆炸时产生的,其数量估计至少有几百万;三是
核动力卫星及其产生的
放射性碎片,到2000年,这类卫星送到
地球轨道上的碎片达3吨。
1957年10月4日,前苏联成功地发射了第一颗
人造地球卫星,揭开了人类空间时代的序幕,同时也为太空送去了第一批垃圾。当时,宇航员完成飞行任务,把卫星的装载舱、备用舱、仪器设备及其他遗弃物都留在了
卫星轨道上。此后,随着人类太空史上的一次次壮举,太空垃圾与日俱增。人类先后已将4000余颗卫星送入太空,当前仍在正常运转的仅有400余颗,其余的或坠毁于地球表面,或遗留在太空,成为太空垃圾。据统计,当前约有3000吨太空垃圾在绕地球飞奔,而其数量正以每年2%—5%的速度增加。科学家们预测:太空垃圾以此速度增加,将会导致灾难性的连锁碰撞事件发生,如此下去,到2300年,任何东西都无法进入
太空轨道了。
太空垃圾给航天事业的发展带来了隐患,它们成为人造卫星和
轨道空间站的潜在杀手,使宇航员的安全受到严重威胁。要知道,太空垃圾是以
宇宙速度运行的。一颗迎面而来的直径为0.5毫米的金属微粒,足以戳穿密封的飞行服;人们肉眼无法辨别的尘埃(如油漆细屑、涂料粉末)也能使宇航员殒命;一块仅有
阿司匹林药片大的残骸可将
人造卫星撞成“残废”,可将造价上亿美元的航天器送上绝路。在人类太空史上,太空垃圾造成的事故和灾难屡见不鲜。1983年,
美国航天飞机“挑战者”号与一块直径0.2毫米的涂料剥离物相撞,导致舷窗被损,只好停止飞行。1986年,“阿丽亚娜”号火箭进入轨道之后不久便爆炸,成为564块10厘米大小的残骸和2300块小碎片,这枚火箭的残骸使两颗
日本通信卫星“命赴黄泉”。1991年9月15日,美国发射的“发现者”号航天飞机差一点与前苏联的火箭残骸相撞,当时“发现者”号与这个“不速之客”仅仅相距2.74千米,幸亏地球上的指挥系统及时发来警告信号,它才免于丧生。据计算,当前太空轨道上每个飞行物发生灾难性碰撞事件的几率为3.7%,发生非灾难性撞击事件的可能性为20%。以此计算,今后将每5—10年可能发生一次太空垃圾与
航天器相撞事件,到2020年将达到2年一次。
法律划分
关于领空(空气空间)和外层空间的划分问题,历来就有两种对立的主张。
空间论
主张是以空间的某种高度来划分领空和外层空间的界限,以确定两种不同法律制度适用的范围。
功能论
认为应根据飞行器的功能来确定其所适用的法律,如果是
航天器,则其活动为航天活动,应适用外空法;如果是航空器,则其活动为航空活动,应受航空法的管辖;整个空间是一个整体,没有划分领空和外层空间的必要。
就“空间论”而言,关于确定外层空间的下部界限大致又有以下几种意见:
①以航空器向上飞行的最高高度为限,即离地面20~40公里
②以不同的空气构成为依据来划分界限。由于从地球表面至数万公里高度都有空气,因而出现以几十、几百、几千公里为界的不同主张,甚至有人认为凡发现有空气的地方均为空气空间,应属领空范围
③以人造卫星离地面的最低高度(105~110公里)为外层空间的最低界限。
1976年,
巴西、
哥伦比亚、
刚果、
厄瓜多尔、
印度尼西亚、
肯尼亚、
乌干达和
扎伊尔等8个
赤道国家发表《波哥大宣言》。主张各赤道国家上空的那一段
地球静止轨道(离地面35267公里)属于各该国的主权范围。上述主权要求,使外空划界问题进一步复杂化。近些年来,一些持“空间论”者逐渐趋向于接受上述第三种意见,即离地面100公里左右为
外层空间的下部界限。1975年,意大利在外空委员会提出以海拔90公里为领空(空气空间)的最高界限。1976年,
阿根廷、
比利时和
意大利支持以海拔150公里为界。1979年,苏联建议离海平面100~120公里以上为外层空间,同时各国空间物体为到达轨道和返回发射国领土,有飞越其他国家领空(空气空间)的权利。但另外一些国家,如美国、英国、日本等,则认为从空间科技现状来看,仍然无法规定一定高度作为领空(
空气空间)和外层空间的界限。他们强调划定外层空间的条件和时机还不成熟。
外空的定义和界限以及
地球静止轨道的法律地位问题尚在联合国和平利用外层空间委员会审议之中。外空委员会正在审议卫星直接电视广播、
卫星遥感地球,以及在外空使用
核动力源等问题,以便草拟有关的法律原则。
外层空间法
联合国和平利用外层空间委员会(简称“外空委员会”)作为永久性机构,于1959年成立。外空委员会设立了法律和科技两个小组委员会,分别审议和研究有关的法律和科技问题,即《关于各国探索和利用包括月球和其他天体在内外层空间活动的原则条约》(1966,简称《
外层空间条约》)、《营救
宇宙航行员、送回宇宙航行员和归还射入外层空间的物体的协定》(1967)、《空间物体所造成损害的国际责任公约》(1971)、《
关于登记射入外层空间物体的公约》(1974)和《关于各国在月球和其它天体上活动的协定》(1979),
中国于1983年12月加入了《
外层空间条约》。
上述条约提出了一些重要原则和规则,对
外层空间法的形成起了重要作用,它们包括:外空的利用应为全人类谋利益;外空和天体供一切国家在平等基础上自由探测和利用;任何国家不得将外空和天体据为己有;探测和利用外空应遵守国际法和维护国际和平与安全;禁止将载有核武器或其他大规模毁灭性武器的人造卫星或航天器放置在
地球卫星轨道和外层空间;发射国对射入外空的物体及其所载的人员具有管辖权和控制权;对紧急降落的宇航员应给以一切可能的协助,尽力予以营救和送回发射国,发现的外空物体应予归还;发射国为其外空物体对地面上或对飞行中的飞机造成的损害负有赔偿的绝对责任;发射国在切实可行范围内将所发射的外空物体和有关情报通知
联合国秘书长;各国探测和利用外层空间应进行合作和互助;在外空进行活动时,应照顾其他国家的利益;从事外层空间活动应避免使外空遭受有害的污染和使
地球环境发生不利的变化;月球和其他天体应限用于和平目的,禁止各种军事利用;月球和其他天体及其自然资源为人类共同财产;公平分配这些资源带来的利益并对发展中国家和对探索作出贡献的国家给予特殊照顾,等等。
在
国际法上,尽管有些学者曾经提出过领空无限的主张,但由于地球的自转和公转,以及整个太阳系的运动,认为
国家主权无限制地延伸到宇宙中去是没有实际意义的。对外空的探测和利用以及数以千计的人造卫星不断地在围绕地球的轨道上运行的事实,表明外层空间依其性质是难以成为国家主权控制的对象的。1963年
联合国大会通过的《各国在探索与利用外层空间活动的法律原则的宣言》,确定了外层空间供一切国家自由探测和使用,以及不得由任何国家据为己有这两条原则。
除上述1963年联大通过的宣言外,外空委员会先后草拟了5项有关外空的国际条约,即《关于各国探索和利用包括月球和其他天体在内外层空间活动的原则条约》(1966,简称《
外层空间条约》)、《营救宇宙航行员、送回宇宙航行员和归还射入外层空间的物体的协定》(1967)、《空间物体所造成损害的国际责任公约》(1971)、《
关于登记射入外层空间物体的公约》(1974)和《关于各国在月球和其它天体上活动的协定》(1979),中国于1983年12月加入了《外层空间条约》。由柳洪平创建。各国正在积极建立
太空司令部。
太空停留
莫斯科时间2024年2月4日,
俄罗斯宇航员
奥列格·科诺年科(Oleg Kononenko)打破了人类在太空停留总时长的世界纪录。俄联邦航天局称,预计到2024年6月5日,科诺年科的太空停留总时长将达到1000天。此前,这一纪录的保持者是俄罗斯宇航员帕达尔卡(Gennady Padalka),他曾五次进行太空飞行,在太空总共度过了878天11小时29分48秒。