根的
初生结构由外至内可分为表皮、皮层和
维管柱3个部分。皮层最内一层细胞为
内皮层,细胞排列整齐而紧密,在细胞的横向壁和径向壁上,常有木质化和
栓质化的加厚,呈带状
环绕细胞一周,称凯氏带(casparian strip)。在
横切面上,凯氏带在相邻的径向壁上呈点状,称凯氏点。这是德国
植物学家R. Caspary于1865年发现的。由于它的存在使得水分和
无机盐只有经过内皮层的
原生质体才能进入维管柱。
木质素和栓质沉积在
初生壁中,并横过
胞间层。凯氏带区
质膜厚且平直,紧贴
细胞壁,非凯氏带区质膜薄而弯曲。当发生质壁分离时,凯氏带区与质膜仍紧紧地融合在一起不分离,这并不是
胞间连丝作用的结果。
当水分和
矿质元素被根的表皮吸收后,沿着两条途径向
维管柱横向输导:一条是通过细胞壁和细胞间隙的
质外体途径;另一条是通过质膜和
原生质的
共质体途径。当进入两条途径的水分和溶质到达
内皮层时,由于内皮层细胞排列紧密和凯氏带的存在,水和溶质不能从
质外体通过内皮层,必须通过内皮层细胞具
选择透性的质膜,进入到原生质中,经
共质体路线,再进入到维管柱中,因此内皮层的凯氏带阻断了皮层与
维管柱之间的
质外体运输途径,犹如生理栅栏和阀门一样,控制着
营养物质和水分进入维管柱。如果没有凯氏带,任何有害和有益的矿物质都可以从内皮层的细胞壁和细胞间隙进入根的
木质部,并初输送到植物体的各个部分,显然对植物是不利的。此外,内皮层还有防止维管柱内的溶质倒流至皮层的作用,从而维持微观组织中的流体静压力,使水和溶质源源不断地进入导管。
木栓化的凯氏带形成了水和溶质难以逾越的屏障,因此根的
质外体在此是
不连续的,可分为
内皮层以外和内皮层以内两部分,而把内皮层假设为是一层“膜”,当“膜”的两侧有水势差时就会发生水的运动。由于水径向从
根毛到
木质部假设为只经过一层“膜”,因而只具有一个根水导(root hydraulic conductance)Lroot,可以下式表示:
大多数
单子叶植物及少数
双子叶植物(如茶)的
内皮层在早期凯氏带加厚的基础上,大部分细胞进一步发展成五面增厚即
内皮层细胞的上、下壁,
径向壁和内
切向壁全面加厚,仅外切向壁仍保持薄壁状态,其
横切面加厚部分呈现U形或
马蹄形,如玉米、葱属、
菖蒲属;少数植物(
百合属)的大部分内皮层细胞甚至发展成六面加厚如
毛茛,仅有少数对着
木质部的内皮层仍停留在凯氏带加厚状态,成为水分和
无机盐进入
维管柱的必经之道,成为
通道细胞。内皮层细胞五面或六面增厚,加强了对维管柱的保护作用。