蒸腾作用(transpiration)是水分从活的植物体
表面(主要是叶子)以
水蒸汽状态散失到大气中的过程,是与物理学的
蒸发过程不同,蒸腾作用不仅受外界环境条件的影响,而且还受植物本身的调节和控制,因此它是一种复杂的生理过程。其主要过程为:土壤中的水分→根毛→根内导管→茎内导管→叶内导管→气孔→大气.植物幼小时,暴露在空气中的全部表面都能蒸腾。
方式分类
皮孔蒸腾
木本植物经由枝条的皮孔和木栓组织的裂缝的蒸腾,叫做皮孔蒸腾。但是皮孔蒸腾的量非常小,约占树冠蒸腾总量的0.1%。
角质层蒸腾
通过叶片和草本植物茎的角质层的蒸腾,叫做角质层蒸腾,约占蒸腾作用的5%~10%。幼嫩叶子的角质蒸腾可达总蒸腾量的1/3到1/2。一般植物成熟叶片的角质蒸腾,占总蒸腾量的5%~10%。长期生长在干旱条件下的植物其角质层蒸腾更低,其蒸腾总量小于5%。
气孔蒸腾
通过气孔的蒸腾,叫做
气孔蒸腾,气孔蒸腾是植物蒸腾作用的最主要方式。
气孔是植物进行体内外气体交换的重要门户。水蒸气(H2O)、
二氧化碳(CO2)、
氧气(O2)都要共用气孔这个通道,气孔的开闭会影响植物的蒸腾、光合、呼吸等生理过程。
气孔是植物叶片表皮组织的小孔,一般由成对的
保卫细胞(guard cell)组成。保卫细胞四周环绕着表皮细
胞,毗连的表皮细胞如在形态上和其它表皮细胞相同,就称之为邻近细胞(neighbouring cell),如有明显区别,则称为
副卫细胞(subsidiary cell)。保卫细胞与邻近细胞或副卫细胞构成
气孔复合体。保卫细胞在形态上和生理上与
表皮细胞有显著的差别。
生理指标
蒸腾速率
蒸腾速率(transpiration)又称为
蒸腾强度或蒸腾率。指植物在单位时间、单位叶面积通过蒸腾作用散失的水量。常用单位g/m/h、mg/dm/h。大多数植物白天的蒸腾速率是15~250g/m/h,夜晚是1~20g/m/h。
蒸腾效率
蒸腾效率(transpiration ratio)是指植物每蒸腾1kg水时所形成的干物质的克数。常用单位:g/kg。一般植物的蒸腾效率为1~8g/kg。
蒸腾系数
蒸腾系数(transpiration coefficient)又称需水量,指植物每制造1g干物质所消耗水分的克数。它是蒸腾效率的倒数。大多数植物的蒸腾系数在125~1000之间。木本植物的蒸腾系数比较低,如松树约40;草本植物蒸腾系数较高,玉米为370、小麦为540。蒸腾系数越低,则表示植物利用水的效率越高。
影响因素
内部
气孔频度(stomatal frequency,为每平方毫米叶片上的气孔数),气孔
频度大有利于蒸腾的进行。
气孔大小气孔直径较大,内部阻力小,蒸腾快。
气孔下腔气孔下腔容积大,叶内外蒸气压差,蒸腾快。
气孔开度气孔开度大,蒸腾快;反之,则慢。
外部
影响蒸腾作用的外部因素蒸腾速率取决于叶内外蒸气压差和扩散阻力的大小。所以凡是影响叶内外蒸气压差和扩散阻力的外部因素,都会影响蒸腾速率。
(1)光照光对蒸腾作用的影响首先是引起气孔的开放,减少气孔阻力,从而增强蒸腾作用。其次,光可以提高大气与叶子的温度,增加叶内外蒸气压差,加快蒸腾速率。
(2)
温度对蒸腾速率的影响很大。当大气温度升高时,叶温比气温高出2~10℃,因而气孔下腔蒸气压的增加大于空气蒸气压的增加,使叶内外蒸气压差增大,蒸腾速率增大;当气温过高时,叶片过度失水,气孔关闭,蒸腾减弱。
(3)湿度在温度相同时,大气的相对湿度越大,其
蒸气压就越大,叶内外蒸气压差就变小,气孔下腔的水蒸汽不易扩散出去,蒸腾减弱;反之,大气的相对湿度较低,则蒸腾速率加快。
(4)风速风速较大,可将叶面气孔外水蒸汽扩散层吹散,而代之以相对
湿度较低的空气,既减少了扩散阻力,又增加了叶内外蒸气压差,可以加速蒸腾。强风可能会引起气孔关闭,内部阻力增大,蒸腾减弱。
生理意义
环境
蒸腾作用为大气提供大量的水蒸汽,使当地的空气保持湿润,使气温降低,让当地的雨水充沛,形成良性循环。
运输
蒸腾作用是植物对水分的吸收和运输的一个主要动力,特别是高大的植物,假如没有蒸腾作用,由
蒸腾拉力引起的吸水过程便不能产生,植株较高部分也无法获得水分。
由于矿质盐类(无机盐)要溶于水中才能被植物吸收和在体内运转,既然蒸腾作用是对水分吸收和流动的动力,那么,矿物质也随水分的吸收和流动而被吸入和分布到植物体各部分中去。所以,蒸腾作用对这两类物质在
植物体内运输都是有帮助的。
降温
蒸腾作用能够降低叶片的温度。太阳光照射到叶片上时,大部分能量转变为热能,如果叶子没有降温的本领,
叶温过高,叶片会被灼伤。而在蒸腾过程中,水变为水蒸汽时需要吸收热能(1g水变成水蒸汽需要能量,在20℃时是2444.9J,30℃时是2430.2J),因此,蒸腾能够降低叶片表面的温度,使叶子在强光下进行光合作用而不致受害。