等腰三角形(isosceles triangle),是指至少有两边相等的三角形。相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“
等边对等角”)。
定义
至少有两边相等的三角形叫做等腰三角形。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做
底边。两腰的夹角叫做顶角,腰和底边的夹角叫做
底角。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“
等边对等角”)。
分类
等腰直角三角形
1、定义
有一个角是直角的等腰三角形,叫做等腰直角三角形。它是一种特殊的三角形,具有所有等腰三角形的性质,同时又具有所有
直角三角形的性质。
2、关系
等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°。
(2)三角形的一个
外角等于和它不
相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
3、四条特殊的线段:角平分线,中线,高,中位线。
(1)三角形的角平分线的交点叫做三角形的内心,它是三角形
内切圆的圆心,它到各边的距离相等。
(2)三角形的外接圆圆心,即外心,是三角形三边的
垂直平分线的交点,它到三个顶点的距离相等。
(3)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的两倍。
(4)三角形的三条高或它们的延长线的交点叫做三角形的垂心。
(5)三角形的中位线平行于第三边且等于第三边的二分之一。
(6)三角形斜边上的高等于斜边的一半。
备注:
①三角形的内心、重心都在三角形的内部 .
③
直角三角形垂心、外心在三角形的边上(直角三角形的垂心为直角
顶点,外心为
斜边中点)。
等边三角形
1、定义
2、性质
(1)每个角都为60°,三角形三内角和等于180°。
(2)三角形的一个
外角等于和它不
相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,大边对大角,大角对大边。
性质
1.等腰三角形的两个底角度数相等(简写成“
等边对等角”)。
2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形
三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的
垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.一般的等腰三角形是轴对称图形,只有一条
对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。
判定的方式
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:
证明
有关问题的证明
已知:△ABC中,∠A=60°,且AB+AC=a,
求证:当三角形的周长最短时,三角形是等边三角形。
证明:AC=a-AB
根据余弦定理
BC2=AB2+BC2-2AB*BC*cosA
BC2=AB2+BC2-AB*BC=AB2+(a-AB)2-AB*(a-AB)=3AB2-3a*AB+a2=3(AB-a/2)2+a2/4
所以当AB=a/2时,BC=a/2最小
AC=a-a/2=a/2
这时,周长为AB+AC+BC=a+BC=a+a/2=3a/2最短
AB=AC=BC=a/2
所以当周长最短时的三角形是正三角形。