测绘科学
学科
测绘是测量绘图的总称。测绘学研究测定和推算地面几何位置、地球形状及地球重力场,据此测量地球表面自然形态和人工设施的几何分布,编制各种比例尺的地图的理论和技术的学科。
测绘科学简介
测绘学的发展在世界上古史时代,就有利用测绘学治理尼罗河泛滥后农田边界整理的传说。公元前7世纪,管仲在其所著《管子》一书中已收集了早期的地图27幅。公元前5世界至3世纪,中国已有利用磁石制成最早的指南工具“司南”的记载。公元前130年,西汉初期便有了《地形图》和《驻军图》,为目前所发现中国最早的地图。
对象和领域
研究测定和推算地面点的几何位置、地球形状及地球重力场,据此测量地球表面自然形状和人工设施的几何分布,并结合某些社会信息和自然信息的地理分布,编制全球和局部地区各种比例尺的地图和专题地图的理论和技术学科。又称测量学。它包括测量和制图两项主要内容。测绘学在经济建设和国防建设中有广泛的应用。在城乡建设规划、国土资 源利用、环境保护等工作中,必须进行土地测量和测绘各种地图,供规划和管理使用。在地质勘探、矿产开发、水利、交通等建设中,必须进行控制测量矿山测量、路线测量和绘制地形图,供地质普查和各种建筑物设计施工用。在军事上需要军用地图,供行军、作战用,还要有精确的地心坐标地球重力场数据,以确保远程武器精确命中目标。
测绘学有着悠久的历史。古代的测绘技术起源于水利和农业。古埃及尼罗河每年洪水泛滥后,需要重新划定土地界线,开始有测量工作。公元前21世纪,中国夏禹治水就使用简单测量工具测量距离和高低。公元前3世纪,亚历山大的埃拉托斯特尼采用在两地观测日影的办法,首次推算出地球子午圈的周长,也是测量地球大小的弧度测量方法的初始形式。724年中国唐代的南宫说等人在张遂(一行)的指导下,在今河南滑县至上蔡实测了约300千米的子午弧长。并在滑县、开封、扶沟、上蔡测量同一时刻的日影长度,推算纬度1°的子午弧长,这是世界上第一次弧度实测。1617年荷兰的W.斯涅耳首创三角测量法进行弧度测量,克服了在地面上直接量测弧长的困难。1687年英国I.牛顿根据力学理论,提出地球是两极略扁的椭球体。1690年荷兰C.惠更斯也提出地球是两极略扁的扁球体。后为法国在南美洲和北欧进行的弧度测量所证明。结束了历时半个世纪的有关地球形状的争论。1743年法国A.C.克莱罗发表《地球形状理论》,奠定了用物理方法研究地球形状的理论基础。1849年英国Sir G.G.斯托克斯提出利用地面重力的测量结果研究大地水准面形状的理论。1945年苏联M.S.英洛坚斯基创立了研究地球自然表面形状的理论,并提出“似大地水准面”的概念。
测绘学是技术性学科,它的形成和发展在很大程度上依赖测量方法和仪器工具的创造和改革。17世纪以前,人们使用简单的工具,如绳尺、木杆尺等进行测量,以量测距离为主。17世纪初发明了望远镜。1617年创立的三角测量法,开始了角度测量。1730年英国的西森制成第一架经纬仪,促进了三角测量的发展。1794年德国的C.F.高斯发明了最小二乘法,直到1809年才发表。1806年法国的A.-M.勒让德也提出了同样的观测数据处理方法。1859年法国的A.洛斯达首创摄影测量方法。20世纪初,由于航空技术发展,出现了自动连续航空摄影机,可以将航摄像片立体测图仪上加工成地形图,促进了航空摄影测量的发展。
20世纪50年代起,测绘技术朝着电子化和自动化发展。1948年起各种电磁波测距仪出现,克服了量距的困难,使导线测量得到重视和应用 。大约与此同时,电子计算机问世,加快了测量计算速度,改变了测绘仪器和方法,出现了解析测图仪,促进了解析测图技术的发展。1957年第一颗人造地球卫星发射成功后,在测绘学中开辟了卫星大地测量航天摄影测量新领域。随后发展起来的甚长干涉测量技术、惯性测量技术,使测绘学增添了新的测量手段。
学科分支
测绘学主要研究对象是地球及其表面形态。在发展过程中形成大地测量学普通测量学、摄影测量学、工程测量学、海洋测绘地图制图学等分支学科。
大地测量学研究和测定地球的形状、大小和地球重力场,以及地面点的几何位置的理论和方法。
普通测量学研究地球表面局部区域内控制测量和地形图测绘的理论和方法。局部区域是指在该区域内进行测绘时,可以不顾及地球曲率,把它当作平面处理,而不影响测图精度。
摄影测量学研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量
工程测量学研究工程建设中设计、施工和管理各阶段测量工作的理论、技术和方法。为工程建设提供精确的测量数据和大比例尺地图,保障工程选址合理,按设计施工和进行有效管理。
海洋测绘研究对海洋水体和海底进行测量与制图的理论和技术。为舰船航行安全、海洋工程建设提供保障。
地图制图学研究地图及其编制的理论和方法。
地图绘制地图出现于上古时代,那时人类从事生产和军事活动产生了对地图的需要。考古工作者曾挖到公元前25世纪至前3世纪画在或刻在陶片、 铜板或其他材料上的地图。据文字记载,中国春秋战国时期地图已用于地政、军事和墓葬等方面。公元前3世纪亚历山大学者埃拉托斯特尼最先在地图上绘制经纬线。168年,中国西汉绘制在帛上的地图(1973年湖南省长沙马王堆汉墓出土),已注意到比例尺和方位。150年古希腊的C.托勒密所著《地理学指南》一书 ,提出了地图投影法。265年,中国西晋的裴秀总结出制图六体的制图原则,从此地图制图有了标准,奠定了中国古代制图的理论基础。17世纪起,西方一些国家用三角测量法进行大地测量,根据实地测量结果绘制国家规模的地形图,这些地形图有准确的方位、比例尺和较高的精度。中国清康熙四十七年至五十七年(1708~1718)完成的《皇舆全图》,是中国历史上首次以实地测量结果绘制的地形图。20世纪初兴起的航空摄影测量方法,加上照相平板彩色胶印技术的应用,促进了地图制图的发展。20世纪60年代以后,地图制图正向计算机辅助制图方向发展。
历史发展
测绘学的任务是测定地球形状、重力场和地面点的几何位置,以及测制各种地图,为地球和空间科学提供有关地球内部结构、地球动态及其外部重力场等方面的信息,并为国家经济建设和国防建设提供有关地球表面自然形态和人工设施的几何分布以及某些社会信息和自然信息的地理分布等方面的资料。
地球形状、重力场和地面点几何位置的测定是大地测量学的任务,它也是测绘学的基础。大地测量学首先是为了测定地球形状发展起来的,是一门古老的学科。
地球是一个圆球的概念古已有之。埃及人在公元前3世纪就对这个球体的大小做过测量,但是他们的测量精度还没达到可信的程度。中国唐朝的一行和南宫说在公元 724年测量过许多地方的夏至日影长度和北极高度。他们的结果折合成现在的单位是一度子午线的长度约为132.3公里,比现代的数值只大20%。到了17世纪末,牛顿从力学观点创立了地扁说,认为地球是两极略扁的椭球。这一学说为法国在1735~1744年期间的大地测量结果所证实。从地圆说到地扁说,是人类对地球形状的认识的一次飞跃,但却经历了两千年。
1743年法国的A.C.克莱洛论证了地球的几何扁率与动力扁率之间的数学关系,奠定了物理大地测量学的基础。在此之前,大地测量只是采用几何方法,称为几何大地测量学。用几何方法和物理方法互为补充来解决大地测量的任务,极大地丰富了大地测量学的内容。
从力学观点来看,地球形状定义为大地水准面,它是一个物理表面,处处与重力方向正交,因而是地球重力场的几何表象。地面点上的重力值与地球内部的质量分布有关,于是地球形状与地球内部结构发生了联系。大地水准面比椭球面更接近于地球真实形状,这是人类对地球形状认识的又一次飞跃。
克莱洛在推导他的公式时,曾对地球内部的质量分布作过某种假定。英国的Sir G.G.斯托克斯于1849年进一步发展了物理大地测量学,提出了利用大地水准面的重力值确定大地水准面形状的理论,这个理论要求在大地水准面之外不存在质量,因此把地面实测重力值归算到大地水准面上的时候要考虑大地水准面以外的质量。但是这种归算不能完全严格地执行。为了克服这种困难,苏联的M.C.莫洛坚斯基于1945年提出了直接利用地面重力数据研究地球形状的理论。但是无论哪一种理论都要求进行全球重力测量。而至今完全用重力测量的方法,独立地解决地球形状问题,还是有困难的。
从50年代末开始形成的卫星大地测量学,给大地测量带来了巨大变革。它突破了常规大地测量的局限性,建立了全球大地网和全球地心坐标系。由卫星轨道摄动观测、海洋卫星测高和地面大地测量数据,建立了地球重力场模型,由此得出了精确的地球扁率,而且在不断精化中。不但如此,测定地球形状和重力场的大地测量方法还用于测定太阳系其他天体的形状和重力场。地球科学和空间科学的研究都涉及重力场的数据。如推算空间飞行器的轨道,导弹发射等既需要地球重力场信息,又需要发射场和目标的地心坐标
现在地面重力测量的精度已达到了10微伽,电磁波测距技术能以千万分之一的精度测量两地面点间的距离。最新发展的甚长基线干涉测量技术可以建立三维惯性坐标系,测定极移和地球自转速度变化,以及以厘米级的精度测定相距几千公里的两点间在这一坐标中的坐标差。
卫星大地测量和声呐技术促进了海洋测绘的发展。现在已由卫星雷达测高技术测定了海洋大地水准面,已有可能建立海底控制网,用于海面和水下定位和导航以及测绘海底地形。
19世纪的测图方法是在实地上直接测绘地形,经过综合取舍,按一定的比例绘制成图。这种方法的作业效率很低,而且受到自然条件的限制。20世纪30年代,用航空摄影测量测绘地图的方法逐渐完备,形成了摄影测量学。用这种方法测图,绝大部分工作都在室内进行,克服了自然条件的限制,因而得到了广泛应用。50年代创立了解析摄影测量的基本理论。60年代出现了由精密立体坐标量测仪和小型电子计算机组成的解析测图仪。新兴的航天遥感技术,通过图像处理、相片量测、判读和计算等过程,可以测定地面点坐标和进行测图。航空摄影图像也可以通过数字化变换成为大量的和密集的灰度数字,存储在磁带上。因此,通过航天遥感和航空摄影技术可以实现测图的完全自动化。
各种工程建设在设计、施工和管理阶段,都需要进行测绘工作,有的还有些特殊要求,工程测量学则是为了适应这些特殊要求而产生的。
由测图过程所得的成品是地形原图,需要进一步加工,才能产生各种比例尺的地图、航海图、航空图和各类专题地图。为此,必须进行地图投影、地图编制地图整饰和地图制印等项工作。这些属于地图制图学的范围。虽然地图的出现可以追溯到上古时代,但只是到现代应用了电子计算机后,地图制图工作才发生了巨大的变革。目前,以电子计算机、数字化台、自动绘图机和软件组成的机助制图系统正被用来实现地形图地籍图绘制和地图编制的自动化。
学科介绍
大地测量学:测绘学和地学领域的基础性学科
(一)现代测绘基准体系
现代测绘基准体系,是为地理空间信息的获取提供空间位置、高程以及重力等方面的起算依据。它由相应的参考系统及其相应的参考框架构成。提供空间位置起算依据的是大地测量参考系统和大地测量参考框架,国际上几乎所有发达国家都在采用国际地球参考系统(ITRS)和国际地球参考框架(ITRF)。近十年来,我国也在利用空间观测技术,建成了2000国家GPS大地控制网,并完成了该网与全国天文大地网联合平差工作,使2000国家大地坐标系(即CGCS2000)不仅有明确的定义,而且具有高精度的参考框架。
我国的高程基准采用1985黄海高程系统,基准是青岛水准原点及其高程值。其参考框架则为国家一、二等水准网高程基准的另一种表现形式是海拔高程正高正常高)的起算面,我国采用CQG2000似大地水准面。关于重力基准,国际上有波茨坦重力系统国际重力标准网(IGSN71)。我国目前采用2000国家重力基本网作为重力基准。
(二)卫星导航定位技术
GPS系统美国已制订出到2020年的“GPS现代化规划”。其实质可归纳为以下三个方面,即“3P”政策:一是保护(Protection);二是阻止(Prevention);三是保持(Preservation)。欧洲空间局( ESA) 已经最终确定了包括30颗Galileo卫星的空间构形和相应地面控制站布设的最有效的方案。同时确定了Galileo和外部系统的关系。预计2010年以后系统投入正式运行。俄罗斯目前正在着手GLONASS系统维护与更新建设工作,并进行了整体规划,开发新一代GLONASS-M卫星,增长卫星寿命和提高卫星性能,使星座卫星数量达到24颗。我国正在发展北斗二代卫星导航定位系统,卫星星座设计考虑到准备向全球导航定位系统过渡。
GPS技术的定位方法的进展主要体现在,一是精密单点定位技术(Precise Point Positioning),可以利用国际GPS地球动力学服务局(IGS)预报的GPS卫星的精密星历或事后的精密星历作为已知坐标起算数据,同时利用某种方式得到的精密卫星钟差来替代用户GPS定位观测方程中的卫星钟差参数,这样用户利用单台GPS双频双码接收机的观测数据在数千平方千米乃至全球范围内的任意位置,都可以2~4dm级精度进行实时动态定位,或以2~4cm级的精度进行快速的静态定位。二是网络RTK,它是在较大的区域内建立多个坐标已知的GPS基准站,对该地区构成网状覆盖,并以这些基准站为基准,计算和发播相位观测值误差改正信息,对该地区内的卫星定位用户进行实时改正的定位方式。国外一些发达国家和我国已经利用网络RTK技术建立了区域连续运行卫星定位服务系统。多频组合、多卫星系统集成的卫星导航定位已成为当今国际卫星导航定位领域的研究开发热点。
(三)地球重力场理论研究与大地水准面精化
确定地球重力场模型可以用地面已知的重力异常观测值解算出来。目前建立地球重力场模型多采用卫星重力法,一是观测人造卫星轨道对参考(正常)轨道的摄动,这可以是由地面观测卫星轨道摄动,也可以是由一颗高轨卫星(如GPS卫星)对低轨卫星(如CHAMP卫星)观测轨道摄动,然后根据卫星轨道摄动理论及其观测数据求解位系数;二是利用同一低轨上两颗卫星(如GRACE卫星)的相互跟踪,测出星间距离变化量,反演地球重力场的位系数;三是在低轨卫星中装有重力梯度仪(如GOCE卫星),直接测出卫星轨道上的重力梯度,以此求解位系数。
确定大地水准面,一般还是解算适合某一区域或国家的相对大地水准面。现在国内外最常用的最好的一种求解重力大地水准面的方法就是移去——恢复技术。另外通过GPS的大地高和精密水准测量可以直接观测到大地水准面差距。为了最终获得一个既有高精度,又有高分辨率的大地水准面,可将高分辨率的重力大地水准面拟合到高精度GPS水准求得的大地水准面上。近年来,我国建立了全国和许多省、市的高精度高分辨率的似大地水准面,其中有的城市似大地水准面精度可达到cm级,分辨率可达到2’30”×2’30”。
(四)地壳运动监测与大地测量地球动力学
随着空间大地测量观测手段的不断发展,地表可观测的覆盖面的扩大和精度的提高,研究对象由局部(如断层)扩展到地区(如板块)及至全球。目前我国的地壳运动监测与大地测量地球动力学的研究主要取得以下实践成果。求出了中国大陆现今地壳运动速度场变形场及其水平应变率场;建立了中国大陆的二维DFEM模型;求解了五个主要板块的绝对和相对板块运动参数;得到了实测的板块运动模型GVMI。另外对我国某些区域如鄂尔多斯地块、青藏高原、川滇地区、华北地区等的地壳运动和昆仑山口MS8.1级地震也进行了相关的研究。
摄影测量与遥感学:基于电子计算机的现代图象信息学科
1.新一代数字摄影测量处理平台
我国正在着手建立新一代航空航天数字摄影测量数据处理平台,出现了刀片集群处理系统。它是由高性能刀片式计算机系统、磁盘阵列、后备电源等组成,是以最新影象匹配理论与实践为基础的自动数据处理系统,打破了传统的摄影测量流程,集生产、质量检测、管理为一体,可以进一步提高数字摄影测量的生产效率。
2.基于DGPS/IMU组合导航技术和LIDAR激光雷达扫描技术的摄影测量
利用在飞机上装载差分GPS和IMU构成的组合导航系统可以获取摄影相机的外方位元素和飞机的绝对位置,实现定点摄影成像和无地面控制的高精度对地直接定位。机载激光雷达(Light Detection and Ranging,LIDAR)是一种集激光,全球定位系统和惯性导航系统于一身的对地观测系统,能直接获取真实地表的高精度三维信息。我国集中在地表信息的获取、数据处理、与遥感影象及其它技术的整合等方面进行研究和应用。
3.航空数码相机的应用技术
数码相机的最大优势在于不增加飞行成本的大重叠度(例如80%以上)影象获取能力,能大幅度提高影象匹配及三维重建(或立体测图)的精度和可靠性,并制作真正射影象。在我国已自主研发出大幅面数码相机。
4.数码城市建模中的数字摄影测量技术
从大比例尺的航空影象获取城市房屋真三维模型是实现三维城市建模的有效途径之一。目前是利用低空飞行平台作为传感器载体,将数码相机安装在可以旋转的平台上,分多条航带拍摄城区影象,再结合地面车载或手持数码相机拍摄的影象进行整体处理,生成建筑物立面影象拼接图等产品,满足数码城市和三维场景可视化的需求。
5.稀少或无地面控制的卫星影象对地定位技术
数字摄影测量技术和方法已经广泛用于高空间分辨率卫星影象的几何处理中,大量研究集中在稀少控制点和无控制点条件下如何提高影象的平面和高程精度。在我国西部至今尚有200万平方公里的国土没有1:5万地形图。我国将采用航天遥感、数字航空摄影、航空航天合成孔径雷达、卫星导航定位、地理信息系统、无控制点或稀少控制点测绘等现代地理空间信息技术的集成手段进行西部测绘工程
(二)航天遥感测绘技术
1.航天遥感数据的获取
目前,中国已初步形成了五个遥感卫星系列——返回式遥感卫星系列、“风云”气象卫星系列、海洋卫星系列、地球资源卫星系列和环境与灾害监测小卫星群系列,开始组成长期稳定运行的卫星对地观测体系,实现对中国及周边地区甚至全球的陆地、大气、海洋的立体观测和动态监测。
2.遥感影像信息提取和多源遥感影象融合技术
利用高光谱影像进行自动目标检测与识别是遥感信息处理领域比较活跃的研究课题。例如在一个复杂的未知背景中,因为人工目标与背景的光谱响应不同,且其尺寸相对很小,所以可将其视为异常目标。在没有足够多先验知识的情况下,如何从高光谱影像中检测这一类目标,我国有许多研究成果。
任何来自单一遥感器的信息都只能反映地物目标某一个或几个方面的特征。数据融合技术一方面可有针对性地去除无用信息,减少数据处理量,提高效率,另一方面又能将海量多源数据中的有用信息集中起来,融合在一起,便于各种信息的特征互补,减少识别目标的模糊性和不确定性。
3.遥感影像与GIS的集成化处理
地理信息系统是用于分析和显示空间数据的系统,而遥感影像是空间数据的一种形式,类似于GIS中的栅格数据。因而,很容易在数据层次上实现地理信息系统与遥感的集成,目前已在软件上实现了。
4.遥感数据处理的理论与应用研究
在基础研究方面,我国开展了目标辐射特性、大气传播模型、反演方法和辐射定标以及在INSAR 和D-INSAR方法、成像光谱仪数据处理、遥感中的空间推理、专家系统和数据挖掘、多源遥感数据融合等领域的遥感数据处理的基础研究。
在遥感应用研究方面,我国在日常的天气、海洋、环境预报及灾害监测、资源调查、土地利用、城市规划、作物估产、国土普查、荒漠化监测、环境保护、气候变化及国防等方面研制了一些遥感数据处理的新方法和新系统。
地图制图与地理信息工程学:以图形和数字形式传输空间地理环境信息的学科
(一)计算机数字化方式的地图制图生产
地图制图生产实现了由传统的手工地图制图技术向现代计算机数字制图技术的跨越式发展。地图制图和出版的数字化与一体化已成为中国地图制图生产的基本技术手段,彻底改变了地图制图技术的落后状况,增强了地图制图与出版的科学性。
(二)多样化的地理信息服务形式
我国的GIS软件由2004年的51个增加到2005的66个,GIS产品种类从开始主要是综合性GIS基础平台软件,发展到现在的基础平台软件、应用开发平台软件、专项工具软件和应用软件的系列产品。各种专业应用GIS中的电子地图、多媒体电子地图、网络电子地图、移动设备导航电子地图等多种地图可视化系统应运而生,用户范围也更加大众化。
(三)地图自动制图综合研究
我国在解决自动综合的许多难题方面取得了充分体现自主创新精神的优秀成果,为电子计算机按照模型来模拟人在制图综合过程中的思维方式创造了十分有利的条件,比较客观和正确地反映了人脑思维特点。尽管计算机不可能百分之百地模拟在制图综合过程中人脑思维的过程,但可以最大限度的逼近这个目标。
(四)空间数据不确定性与数据质量控制
主要探讨和研究引起GIS空间数据不确定性的原因和表现、GIS空间数据不确定性的处理方法、GIS分析处理过程中空间数据不确定性的传播机理等,例如,基于Web Service数据质量信息服务系统,数字高程模型(DEM)的不确定性等成果在深化GIS空间数据不确定性的研究方面具有重要理论和实际意义。
(五)虚拟现实技术的实用化
对于虚拟地理环境,现在注重研究构建统一的分布式虚拟地理环境系统框架,目的是实现不同类型仿真系统间的互操作和部件的重用,体现了层次化、抽象的数据类型、隐含激活及支持分布式的特点。通过对虚拟现实技术中场景的建模和控制的深入研究,使系统具有真正意义的分布性、3维性、交互性,多媒体集成性和境界逼真性,从而更接近实用。
(六)空间数据挖掘和知识发现研究
近年来,空间数据挖掘和知识发现的研究取得了显著进展。在其算法研究方面,如针对目前忽视GIS数据库中存在的小部分新颖的、与常规数据模式显著不同的新的数据模式的情况,给出了空间离群点检测算法。
(七)地球空间信息网格技术
地球空间信息科学或测绘科学技术领域提出了空间信息网格,它实质上是网格技术与空间信息技术的融合与集成。在我国对它从广义和狭义两个层面进行了研究。
(八)地图制图学与地理信息工程理论
地图制图学与地理信息工程学科中除了地图投影、地图综合和地图符号等传统理论外,又增加了如地图空间认知理论、地理信息传输理论、地图视觉感受理论等现代理论,地图制图学与地理信息工程科学的理论体系正在逐步形成。
工程测量学:国民经济和社会发展中的测绘科学技术应用学科
(一)精密大型工程测量新技术
卫星定位技术已被广泛用于各种类型工程控制网。特别是随着大地水准面精化工作的深入开展,使工程控制网从二维发展到三维,彻底改变了传统工程控制网的缺陷。在精密大型工程测量中高精度实时RTK技术用于施工放样。并结合工程特点设计和制造出一些专用的仪器和工具,使众多学科技术在施工测量中渗透与融合,并在施工测量中得到应用。GPS、GIS技术将紧密结合工程项目,在勘测、设计、施工管理一体化方面发挥重大作用。
(二)数字城市与工业信息系统
当前城市大比例尺地形图、地籍图、房产图、竣工图、地下管网图、导航电子地图等基本上都已经实现了数字化测绘,出现了各种类型的数字化测图系统。这些测图系统与常用地理信息系统的接口,实现了野外采集数据与GIS数据间的交换,使野外数字测图系统成为GIS系统前端数据获取的一个子系统。现在城市规划、建筑设计正在推行三维规划和三维设计;房地产业在网上推行三维立体房销售;导航电子地图也出现三维导航地图。这些都对测绘提出绘制三维现状图的要求。全面应用数字测图技术,发展内、外业一体化数据采集与制图系统,对于大型工程建设的工程勘察、设计、施工和竣工存档,提供高质量、多形式的空间基础信息支持。
全国省会以上城市和部分地级市都建立了城市基础地理信息系统。市政设施现代化管理越来越重要,现在国内外都十分重视市政设施现代化管理中的空间信息网格技术的研究,将市政设施信息按网格建库进行管理,并进行动态变化监测。
(三)变形监测技术
变形监测,是为了保证构筑物在施工、使用过程中的设备和人员的安全所必须进行的测量工作。现在超大型建筑物、构筑物、地库等工程不断出现,变形监测精度要求也很高,一般都在1mm左右,有的要求亚毫米。其数据处理要根据实际情况建立反映变形量与变形因子的数学模型,对引起变形的原因进行分析,必要时还要对变形趋势进行预报。现代变形监测往往是将现代大地测量仪器空间技术、激光技术、无线通信技术相结合实现连续、动态、实时、自动化监测,具有自动照准、自动观测、自动记录、自动数据处理、自动生成各种图形和报表。
(四)工业测量技术
现代工业生产要求对产品的设计、模拟、生产自动化流程,生产过程控制,产品质量检验与监控等进行快速的,高精度的测量、定位,并给出复杂形体的数字模型或运行轨迹等,因此,兴起了为工业生产服务的测量技术。其手段和仪器设备,主要是以电子经纬仪或全站仪、摄影仪或显微摄影仪、激光扫描仪等传感器在电子计算机硬件和软件的支持下形成的三维测量系统。这些技术的引进,使工业现场精密测量自动化水平大大提高。
(五)城市地下管线探测技术
地下管线探测、检测与评估技术为摸清城市已有地下管线的现状,以及评估地下管线的风险提供了一种快捷、经济和有效的手段。非金属管线探测技术中的探地雷达弥补了常规地下管线探测仪在探测非金属地下管线方面的缺陷,已成为探测非金属地下管线的重要技术方法之一。电子标识器的使用为探测非金属地下管线提供了一种新的方法。城市地下管线信息管理系统建设已由原来孤立的系统建设模式,逐步发展成为充分整合城市已有的地下管线信息资源,建立城市地下管线信息共享平台。
海洋测绘学:海洋空间的测绘科学技术学科
(一)海道测量
在海洋测深过程中,为解决回声测深仪波束角效应使记录的测深图象失真问题,提出了波束角效应的改进模型及其改正算法。针对多波束测深数据集,采用改进的距离反比权重算法和多细节层次模型技术来建立海底数字地形模型(DTM)。应用双频GPS动态后处理高精度定位技术建立了一套完整的GPS无验潮海洋深度测量作业模式,显著提高水深测量成果的精度。
(二)海洋重力场与磁力场测量
有关海洋重力的确定,首先研究了建立我国陆海新一代平均重力异常数字模型问题:基于重力场的频谱理论,给出了扰动引力在全球平均意义下的功率谱表达式;推导了垂线偏差同大地水准面差距偏导数的转换公式;推导了水平重力梯度边值问题的级数解。
海洋磁力测量的研究,从磁偶极子磁场出发,推导出一个简单的测线间距计算公式。基于磁力线定义和均匀磁化球体周围的磁场分布,推导出一个简单的磁力线簇公式。以陆用地磁日变站为基础,结合DGPS系统和浮标技术,自行设计开发数据实时采集与传输系统。采用布设海底地磁日变观测锚系的技术方法,解决了远海区磁测日变改正观测资料问题。
(三)空基海洋测绘技术
首先重点研究了利用有理函数模型实现高分辨率卫星CCD影象的单片定位的方法;其次提出了一种遥感图象半自动提取建筑物的方法;第三提出了一种基于多分辨率小波高频特征系数的高光谱遥感影象亚像素目标识别方法;第四针对IKONOS高分辨率卫星影象处理中的不适应性,提出一种更为精确细致的图象融合方法—自适应小波包分析法;第五从测高卫星飞行轨道的规律出发,提出了采用“距离加权平均”计算正常点海面高的新方法;第六研究了观测卫星的选择对基线解算质量的影响,提出了提高基线解算质量的人工选星的基线处理方法。
(四)海图制图与海洋地理信息工程
首先提出了基于Circle原理和“优胜劣汰”思想的地图综合新算法;其次探讨了数字测图中的坐标变换方法,总结了一套作业思路和方法;第三提出了基于Flash技术制作多媒体电子地图的解决方案及实现过程;第四研究了一种由计算机自动生成Delaunay三角网的增点生长构造法;第五实现了MapInfo图形数据在IE中的显示与浏览,从而验证了用VML实现地理空间数据可视化的可行性;第六建立了计算机海图档案系统。
参考资料
最新修订时间:2023-06-14 13:37
目录
概述
测绘科学简介
对象和领域
参考资料