当
水泥与适量的水调和时,开始形成的是一种可塑性的
浆体,具有可加工性。随着时间的推移,浆体逐渐失去了可塑性,变成不能流动的紧密的状态,此后浆体的强度逐渐增加,直到最后能变成具有相当强度的石状固体。如果原先还掺有集合料如砂、石子等,水泥就会把它们胶结在一起,变成坚固的整体,即我们常说的混凝土。这整个过程我们把它叫做水泥的凝结和硬化。
科技信息
从物理、化学观点来看,凝结和硬化是连续进行的、不可截然分开的一个过程,凝结是硬化的基础,硬化是凝结的继续。但是在施工中为了保证施工质量,要求在水泥
浆体失去其可塑性以前必须结束施工,因此人们根据需要以及水泥浆体的这个特性,人为地将这整个过程划分为凝结和硬化两个过程。凝结是指水泥浆体从可塑性变成非可塑性,并有很低的强度的过程;硬化是指浆体强度逐渐提高能抵抗外来
作用力的过程。此外,对
凝结过程还人为地进一步划分为初凝和终凝,用加水后开始计算的时间来表示。例如,
国家标准规定:
硅酸盐水泥初凝不得早于45min,终凝不得高于6.5h,
普通硅酸盐水泥和其他四大水泥终
凝固时间不得超过10小时。使用时必须在初凝前完成浇筑振捣等工序。终凝后,才能脱去模板开始下一个周期生产。
化学过程
水泥的凝结和硬化,是一个复杂的物理—
化学过程,其根本原因在于构成
水泥熟料的
矿物成分本身的特性。水泥熟料矿物遇水后会发生水解或
水化反应而变成水化物,由这些水化物按照一定的方式靠多种引力相互搭接和联结形成
水泥石的结构,导致产生强度。
普通硅酸盐水泥熟料主要是由
硅酸三钙(3
CaO·SiO2)、
硅酸二钙(β-2CaO·SiO2)、
铝酸三钙(3CaO·Al2O3)和
铁铝酸四钙(4CaO·Al2O3·Fe2O3)四种
矿物组成的,它们的相对含量大致为:硅酸三钙37~60%,硅酸二钙15~37%,铝酸三钙7~15%,铁铝酸四钙10~18%。这四种矿物遇水后均能起
水化反应,但由于它们本身矿物结构上的差异以及相应水化产物性质的不同,各矿物的水化速率和强度,也有很大的差异。按水化速率可排列成:铝酸三钙>铁铝酸四钙>
硅酸三钙>
硅酸二钙。按最终强度可排列成:硅酸二钙>硅酸三钙>铁铝酸四钙>铝酸三钙。而水泥的
凝结时间,
早期强度主要取决于铝酸三钙和硅酸三钙。
水泥的凝结和硬化:
首先,介绍铝酸三钙。它的水化反应可用下式表达。
3CaO·Al2O3+6H2O→3CaO·Al2O3·6H2O(水化
铝酸钙,不稳定);
上述铝酸三钙的水化反应如果进行得很快,会导致水泥的凝结过快而无法使用,因此,一般在粉磨水泥时都掺有适量的
二水石膏作为
缓凝剂,掺石膏后铝酸三钙的水化反应如下式所示。
3CaO·Al2O3+3CaSO4·2 H2O+26H2O→3CaO·Al2O3·3CaSO4·32H2O(
钙矾石,三硫型水化
铝酸钙)
由于这个反应就不会引起快凝。当水泥中的石膏完全作用完后,还有多余3CaO·Al2O3时将发生下列反应。
3CaO·Al2O3·3CaSO4·32H2O+2〔3CaO·Al2O3〕+4 H2O→3〔3CaO·Al2O3·CaSO4·12H2O〕(单硫型水化铝酸钙)
如果还有过量3CaO·Al2O3时,就会生成4CaO·Al2O3·13H2O。在正常缓凝的
硅酸盐水泥中,石膏掺入
量能保证在浆体结硬以前,不会发生后两个反应。
3
CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(
OH)2;
由于CaO0.8~1.5SiO2·H2O0.25与天然的托勃莫来石很相似,因而称它为
托勃莫来石,通常用CSH(B)来表示。
铁铝酸四钙水化反应和铝酸三钙相似,反应可表示如下:
4CaO·Al2O3·Fe2O3+7H2O→3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O 现分别简述它们的
水化反应。
而
硅酸二钙水化反应和硅酸三钙相似,反应可表示如下:
2CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2;
硅酸盐水泥拌合水后,四种主要
熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成
水化硅酸钙(C-S-H凝胶)和
氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过
水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 所形成的
水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成
介稳状态的水化
铝酸钙,最终转化为水
石榴石(C3AH6)。 在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型
水化硫铝酸钙,简称
钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化
水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,
水化热较低,即使单独水化也不会引起快凝。其
水化反应及其产物与C3A很相似。
原理
这些水化产物怎样会导致
水泥浆结硬并产生强度呢?
水泥凝结硬化的机理究竟是什么?
按结晶理论认为
水泥熟料矿物水化以后生成的
晶体物质相互交错,聚结在一起从而使整个物料凝结并硬化。按胶体理论认为水化后生成大量的胶体物质,这些胶体物质由于外部干燥
失水,或由于内部未水化颗粒的继续水化,于是产生“
内吸作用”而失水,从而使胶体硬化。随着科学技术的发展,特别是X—射线和
电子显微技术的应用,将这两种理论统一起来,过去认为
水化硅酸钙CSH(B)是胶体无定形的,实际上它是纤维状晶体,只不过这些晶体非常细小,处在胶体大小范围内,比面积很大罢了。所以比较统一的认识是:
水泥水化初期生成了许多胶体大小范围的晶体如CSH(B)和一些大的晶体如Ca(OH)2包裹在水泥颗粒表面,它们这些细小的固相质点靠极弱的物理引力使彼此在接触点处粘结起来,而连成一空间
网状结构,叫做凝聚结构。由于这种结构是靠较弱的引力在接触点进行无秩序的连结在一起而形成的,所以结构的强度很低而有明显的可塑性。以后随着水化的继续进行,水泥颗粒表面不大稳定的包裹层开始破坏而
水化反应加速,从饱和的溶液中就析出新的、更稳定的水化物晶体,这些晶体不断长大,依靠多种引力使彼此粘结在一起形成紧密的结构,叫做
结晶结构。这种结构比凝聚结构的强度大得多。水泥浆体就是这样获得强度而硬化的。随后,水化继续进行,从溶液中析出新的晶体和
水化硅酸钙凝胶不断充满在结构的空间中,
水泥浆体的强度也不断得到增长。
影响水泥硬化的原因
影响
水泥凝结速率和硬化强度的因素很多,除了
熟料矿物本身结构,它们相对含量及水泥磨粉
细度等这些
内因外,还与外界条件如温度、加水量以及掺有不同量的不同种类的外加剂等
外因密切相关
假凝是指水泥的一种不正常的早期固化或过早变硬现象。一般情况下,是因为干粉水泥加热造成
二水硫酸钙中
结晶水脱水,即石膏脱水,石膏调节凝结水泥的凝结时间失效。水泥中水化作用最快的铝酸三钙快速水化凝结,放热加速其他矿物加速水化,凝结硬化。
假凝现象与很多因素有关,一般认为主要是由于
水泥粉磨时磨内温度较高,使
二水石膏脱水成
半水石膏的缘故。当水泥拌水后,半水石膏迅速水化为二水石膏,形成针状结晶网状结构,从而引起浆体固化。另外,某些含碱较高的水泥,
硫酸钾与二水石膏生成
钾石膏迅速长大,也会造成假凝。假凝与快凝不同,前者放热量甚微,且经剧烈搅拌后浆体可恢复塑性,并达到正常凝结,对强度无不利影响。