无穷大量
数学名词
自变量x无限接近x0(或|x|无限增大)时,函数值|f(x)|无限增大,则称f(x)为x→x0(或x→∞)时的无穷大量。例如f(x)=1/(x-1)^2是当x→1时的无穷大量,f(n)=n^2是当n→∞时的无穷大量。无穷大量的倒数是无穷小量。应该特别注意的是,无论多么大的常数都不是无穷大量。
量子电动力学
现代物理理论探索中,量子场论的创建首先是由狄拉克在1927年写下电子的相对论方程开始的。在他的框架中,电磁场无穷维振动的迭加,每一维振动的能量取一系列分立的数值,使其量子化,而振动中被缴发时能级态的上下跃迁,就对应着光子的产生与湮灭。1928年约当和维格纳引入了电子场的概念,给出了狄拉克的电子相对论量子力学方程的全新解释,并仿照狄拉克的电磁场量子化方式,建立了电子场的量子化理论,称量子电动力学,一般用“QED”表示。该理论于1929年受到了海森堡和泡利的进一步研究。
在QED中:电磁场是矢量场,其量子φ是自旋为1的光子,为玻色子反粒子就是它自己;而电子场ψ是旋量场,其量子则是自旋为1/2的电子,为费米子,它的反粒子是正电子;ψ是以电流的形式与φ相耦合的,而φ则具有定域规范对称性,可以用U(1)群描述;ψ激发时能态的上下跃迁,就对应着正负电子对的产生与湮灭。
由于QED有上述简单约定,就可以描述包括粒子产生和湮灭在内的多粒子系统,能够与实验高度一致,因此它便被现代物理学普遍接受,并把同样的手段和方法类推到了弱电作用的统一及强相互作用,构建出了众人称颂的规范理论标准模型
(一)
QED中电子之间的相互作用,被规定为是电流之间通过电磁场φ为媒介发生的耦合,由于理论家们并能直接求解相互作用方程,只能求解自由场方程,因此在具体求解相互作用方程时,就把相互作用看成一种对自由场的微弱的扰动,把与实验相关的散射截面衰变宽度物理量表示成是相互作用强度α的幂级数,由于α=1/137很小,所以就可以逐级求出它的近似解。这种方法称之为微扰论。这是一种求解电子相互作用方程的有效的近似方法
微扰论的所有最低级近似计算都很简单,而且与当时的实验结果符合得很好,但是如果把精度再提高一级,上述构想就暴露出了严重的问题。
1930年,美国物理学家奥本海默计算了电子与它自己的电磁场φ的相互作用。由于φ是具有连续无穷维自由度系统,每一维自由度都会不断发射或吸收虚光子、及由于真空极化形成的正负虚电子对的产生与湮灭,它与电子场ψ是二元存在。奥本海默的计算涉及到了对φ的所有虚光子的动量积分,它的取值自然也就成为了无穷大。电子与自己场的这种相互作用构成的是电子自能,也就是电子的质量。这个结果表明,在最低级近似下求得的电子质量是无穷大。同时,奥本海默还得出,电子吸收或放出虚光子截面也是无穷大。
作为QED二级微扰近似过程的一个部分,电子之间相互作用过程中,始终都会有真空极化的正负虚电子对产生,但以此为依据进行的计算又表明,电子电量也是无穷大。
QED得到的这种不符合实际无穷大,也称是它的发散困难。那么,怎样消除QED的这种难堪的发散困难呢?后来理论家们发现了一种称为重整化的运算规则,其具体方法就是在计算中通过重新定义质量、电荷等物理常数,把可以导致无穷大的结果都吸收掉,从而使计算能够得到定量的有限取值。对这种方法的物理解释是:由于电子总是被虚的光子和虚的正负电于对所包裹,所以对它的计算会导致无穷大,如果把它真实存在称为裸电子,我们是看不到裸电子的,所以在考虑电子实际的真实存在时,计算中就应当重新定义电子的质量与电荷,从而把那些可能出现的发散项都吸收掉。
特别说明:重整化使QED的理论与实验测量在很高的精度上保持了一致,非常有效。
(二)
显然,重整化首先属于吸收QED发散项的一种在计算中使的数学技巧,再根据理论家们对这种数学技巧的解释,很容易有以下认识:
1.容易理解,计算中QED有发散项并没有逻辑错误,它产生的根源,就是由于电磁场φ与电子场ψ是独立的二元存在,以及φ具有连续无穷维自由度,有真空极化,而“重整化”重新定义电子的有限物理量,其实质也就是否定了φ与场ψ是独立的二元存在,以及φ具有连续无穷维自由度,有真空极化。这就是说,只有离开了QED所构想的电磁场的图景,所做的计算才能与实际保持一致。重整化吸收QED中的发散项,这也就意味着现代理论物理学中、以QED为模式的量子场图景是根本错误的。
现代理论物理学中,QED产生无穷大的根源,是因为形成电作用的电磁场根本就不是现代量子场论所设想的那样。即QED实际仅仅只是给出了定量表述电子参与电磁作用的一种数学方法,并没有给述电子参与电磁作用的真实物理图景。
2.正因为QED并没有给述电子参与电磁作用的真实物理图景,由此就形成现代量子场理论描述基础不确定的危机,即现代量子场理论的描述基础还没有正确地建立起来。对此最典型的证据,就是我们在当前这个基础上所进行的计算,总会出现无穷大的发散项,虽然我们能够找出抛弃无穷大的一些规则,但这些规则并不来自理论本身的逻辑前提,并没有解决理论为什么会出现发散项的问题,完全是人为的,而我们相信量子场理论的理由,也仅仅只是因为它的数学结果能够与观测相符合,而这种数学结果的获取需要使用人为规则;这是显而易见的人工雕琢。也正因为现代量子场理论描述基础的不确定,所以当我们把QED观念用于了能量非常高、作用距离非常小的粒子时,重整化技巧也就会完全失效,相互作用的方程也就不会有合理的解。后来,虽然通过希格斯机制似乎解除了理论的这种危机,但怎样准确计算希格斯机制的质量?希格斯机制需要的希格斯粒子是否存在,这些理论本身并不能确定。因此希格斯机制并没有化解现代量子场理论描述基础的危机,而只不过是改变了这种危机的方式。
3.现存的场量子理论中,不仅描述电磁作用的QED,包括描述弱电统一的萨拉姆和格拉肖的模型、描述强作用量子色动力学,以及包括超弦理论在内,凡涉及到与真空相关联的计算,就总会有无穷大的发散项, 例如真空自能发散、真空涨落发散、跃迁矩阵元紫外发散等等。所有这些事实皆表明,量子场理论描述真空受激发产生出虚粒子的真空观、与实际并不相符。因此,要解决现代量子场理论描述基础的危机,就应当离开量子场理论的虚粒子真空观,依照真空受激发表现出来的现象事实,去重新认识真空,从而形成全新的描述依据。这是实现量子场理论描述基础正确,使其完备自洽,不产生无意义的发散项、并能够适用于任何相互作用,对量子化场理论作出根本改善的关键。
评论
1.有人认为,现代量子场理论之所以有发散项,是因为理论采用了点模型造成的。这是不正确的。因为超弦就是非点模型,它同样也有无穷大的发散困难。因此正如作者所述,量子场理论有发散项,是因为它描述依据的物理场、及形成相互作用与实际情形不相符。
2.不能认为,从数学的角度,现代量子场论具有非常优美的规范对称性,它的重整化也获得了诺贝尔物理奖,就对以QED为模式的现代量子场论的正确性深信不疑。因为这种数学美及重整化,并没有解决如粒子自旋是怎样产生的、决定质量大小因素是什么等等,这些现代量子场论需要解决的最基本的问题,因此不能作为信仰理论的依据。
当理论自身的逻辑出现了与实际不相符的困难时,如果逻辑本身没有问题,可能性就是作为理论出发点的描述依据与实际并不符。量子电动力学自身的逻辑出现了与实际不相符的发散项,而它的逻辑本身并没有问题,这就味意着虚粒子真空作为现代量子场论的描述依据,与真空真实的实际存在并不相符。那种离开了对现代量子场论物理图象的思考,认为现代量子场论的困难是因为我们缺乏好的数学工具;这是对物理理论研究的严重误读。
参考资料
最新修订时间:2024-01-02 15:47
目录
概述
量子电动力学
参考资料