3D打印(3DP)又称增材制造技术(Additive Manufacturing Technologies,AM),是一种依据三维CAD数据通过逐层材料累加的方法制造实体零件的技术。
历史发展
在20世纪80年代,早期的3D打印技术开始崭露头角。这一阶段的技术被称为
快速成型技术(Rapid Prototyping),其核心理念是根据数字模型将物体逐层打印出来,以实现快速制造
原型。在20世纪90年代至21世纪初的中期发展阶段开始逐渐成熟,不仅应用于工业设计、模型制作和原型制造,还开始渗透到医疗、航空、汽车和建筑等领域。进入21世纪后,3D打印技术取得了更为显著的突破,不仅能够打印出复杂的结构和精密的零部件,还可以实现多材料、多色彩的打印。这使得3D打印在制造业、医疗、航空航天、等多个领域的应用更加广泛和深入。
1986年,美国科学家Charles Hull开发了第一台商业3D
印刷机。
1995年,美国ZCorp公司从
麻省理工学院获得唯一授权并开始开发
3D打印机。
2005年,市场上首个高清晰彩色3D打印机Spectrum Z510由ZCorp公司研制成功。
2010年11月,美国Jim Kor团队打造出世界上第一辆由3D打印机打印而成的汽车Urbee问世。
2011年6月6日,发布了全球第一款3D打印的
比基尼。
2011年7月,英国研究人员开发出世界上第一台3D巧克力打印机。
2011年8月,
南安普敦大学的工程师们开发出世界上第一架3D打印的飞机。
2012年11月,
苏格兰科学家利用
人体细胞首次用3D打印机打印出
人造肝脏组织。
2013年10月,全球首次成功拍卖一款名为“ONO之神”的3D打印艺术品。
2013年11月,美国
德克萨斯州奥斯汀的3D打印公司“固体概念”(SolidConcepts)设计制造出
3D打印金属手枪。
2018年8月1日起,3D打印枪支将在美国合法,3D打印手枪的设计图也将可以在互联网上自由下载。
2018年12月10日,俄罗斯宇航员利用
国际空间站上的
3D生物打印机,设法在零重力下打印出了实验鼠的
甲状腺。
2019年1月14日,美国
加州大学圣迭戈分校在《自然·医学》杂志发表论文,首次利用快速3D打印技术,制造出模仿中枢神经系统结构的脊髓支架,在装载
神经干细胞后被植入脊髓严重受损的大鼠脊柱内,成功帮助大鼠恢复了运动功能。该支架模仿中枢神经系统结构设计,呈圆形,厚度仅有两毫米,支架中间为H型结构,周围则是数十个直径200微米左右的微小通道,用于引导植入的神经干细胞和轴突沿着脊髓损伤部位生长。
2019年4月15日,
以色列特拉维夫大学研究人员以病人自身的组织为原材料,3D打印出全球首颗拥有细胞、血管、心室和心房的“完整”心脏,这在全球尚属首例(
3D打印心脏)。
2022年3月,
加拿大英属哥伦比亚大学(UBC)的科学家利用3D技术打印出人类
睾丸细胞,并发现其有希望产生
精子的早期迹象,世界上尚属首次。
2022年4月,一项新3D打印系统发表在《
自然》杂志上,这项新3D打印系统是由美国研究人员开发的一种在固定体积的树脂内打印3D物体的方法。打印物体完全由厚树脂支撑,就像一个动作人偶漂浮在一块果冻的中心,可从任何角度进行添加。可更轻松地打印日益复杂的设计作品,同时节省时间和材料。
2022年6月,据外媒报道,一名来自墨西哥的20岁女性成为世界第一个通过3D打印技术成功进行耳朵移植的人。
2022年11月,央视军事报道“3D打印技术在飞机上的应用我们已达到规模化、工程化处于世界领先位置”。
2022年,
哈尔滨工业大学重庆研究院项目负责人、博士生导师杨治华带领团队围绕“先进陶瓷及其智能制造技术”取得重大突破,掌握了结构功能一体化陶瓷及其器件制备核心技术,特别是攻克了陶瓷3D打印“定制化”关键技术,能够针对不同器件和需求进行规模化加工生产。
2023年,俄罗斯
门捷列夫化工大学开发出一种新的
生物聚合物多相3D打印技术。
2023年5月,以色列的一个食品科技公司成功地用 3D 打印技术制造出了世界首块
人造鱼肉,而且口感和真鱼无异。
2023年6月消息,包括澳大利亚
皇家墨尔本理工大学、
悉尼大学在内的国际研究团队将
合金和3D打印工艺结合在一起,创造出了一种新的
钛合金,这种合金在拉伸下坚固而不脆。
技术分类和原理
各种各样的3D打印技术已经被开发出来,具有不同的功能。根据ASTM标准F2792 , ASTM将3D打印技术分为七大类,包括粘结喷射、定向能沉积、材料挤压、材料喷射、粉末床熔融、片材层压和还原光聚合。
粘结喷射. Binder jetting
粘结剂喷射是一种快速成型和3D打印工艺,将化学粘结剂喷射到涂覆的粉末上形成粘结层。粘合喷射可以打印各种材料,包括金属,砂,聚合物,杂化和陶瓷。有些材料如沙子不需要额外的加工。此外,粘合剂喷射过程简单,快速和廉价的粉末颗粒粘在一起,有能力打印非常大的产品。
定向能沉积Directed energy deposition
定向能沉积是一种更复杂的打印工艺,通常用于修复或向现有组件添加额外材料。可用于陶瓷,聚合物,但通常用于金属和金属基混合物,以电线或粉末形式的打印。
材料挤压Materials extrusion
基于材料挤压的3D打印技术可用于塑料、食品或活细胞的多材料、多色打印。熔融沉积建模(FDM)是材料挤压系统的第一个例子。FDM是在1990年初发展起来的,该方法以聚合物为主要材料。FDM通过加热和挤压热塑性长丝,从底部到顶部逐层构建零件。
材料喷射Materials jetting
材料喷射是一种3D打印过程,其中一滴一滴地选择性沉积建筑材料。在材料喷射中,打印头将固化的光敏材料滴入,在紫外线(UV)光下逐层构建零件。
粉末床熔融Powder bed fusion
粉末床熔融工艺包括电子束熔化(EBM)、选择性激光烧结(SLS)和选择性热烧结(SHS)打印技术。这种方法使用电子束或激光将材料粉末熔化或融合在一起。在这个过程中使用的材料的例子是金属,陶瓷,聚合物,复合材料和混合材料。
片材层压Sheet lamination
片材复合是将材料片材粘合在一起,产生物体的一部分的3D打印过程。使用该工艺的3D打印技术的例子是层压对象制造(LOM)和超声增材制造(UAM)。
还原光聚合Vat Photopolymerization
常用的主要3D打印技术是光聚合,通常是指使用激光、光或紫外线(UV)固化光反应性聚合物。在SLA中,它受到光引发剂和辐照暴露特定条件以及任何染料、颜料或其他添加的紫外线吸收剂的影响。还原光聚合的重要参数是曝光时间、波长和功率。最初使用的材料是液体,当液体暴露在紫外线下会变硬。
打印过程
增材制造的一般
工艺流程为:首先利用计算机辅助建模软件(如CAD软件)设计一个所需的三维模型。然后用切片软件对此模型进行数据处理,3D打印机将会在多种成型原理中选择一种成型方式,根据这些工作路径对原材料进行逐层打印。当二维薄片逐层堆叠在一起后,设计好的三维模型就制造成型了。最后,将打印好的模型取下后还需要进行后处理,一般包括清洗和固化两个步骤。
三维设计
三维打印的设计过程是:先通过计算机建模软件建模,再将建成的三维模型“分区”成逐层的截面,即切片,从而指导打印机逐层打印。设计软件和打印机之间协作的标准文件格式是STL文件格式。一个STL文件使用三角面来近似模拟物体的表面。三角面越小其生成的表面分辨率越高。PLY是一种通过扫描产生的三维文件的扫描器,其生成的VRML或者WRL文件经常被用作全彩打印的输入文件。
切片处理
切片软件将三维模型按照设定的层厚进行切片,将模型划分为一系列的水平层。每一层都被转换为一个二维图像,描述了该层在打印时需要填充或构建的区域。在切片软件中,可以调整模型在打印平台上的位置和角度,以优化打印效果和节省材料。
逐层打印
打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。这种技术的特点在于其几乎可以造出任何形状的物品。
打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素/英寸)或者微米来计算的。一般的厚度为100微米,即0.1毫米,也有部分打印机如ObjetConnex 系列还有三维 Systems' ProJet 系列可以打印出16微米薄的一层。而平面方向则可以打印出跟激光打印机相近的分辨率。打印出来的“墨水滴”的直径通常为50到100个微米。用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。而用三维打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。一个桌面尺寸的三维打印机就可以满足设计者或概念开发小组制造模型的需要。
有些技术可以同时使用多种材料进行打印。有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶物)作为支撑物。
后处理
将打印好的模型取下后进行后处理,包括清洗固化,打磨,机械抛光,化学抛光,上色等步骤。
限制因素
材料的限制
虽然高端工业印刷可以实现塑料、某些金属或者陶瓷打印, 但无法实现打印的材料都是比较昂贵和稀缺的。另外,打印机也还没有达到成熟的水平,无法支持日常生活中所接触到的各种各样的材料。
研究者们在多材料打印上已经取得了一定的进展,但除非这些进展达到成熟并有效,否则材料依然会是3D打印的一大障碍。
机器的限制
3D打印技术在重建物体的几何形状和机能上已经获得了一定的水平,几乎任何静态的形状都可以被打印出来,但是那些运动的物体和它们的清晰度就难以实现了。这个困难对于制造商来说也许是可以解决的,但是3D打印技术想要进入普通家庭,每个人都能随意打印想要的东西,那么机器的限制就必须得到解决才行。
知识产权的忧虑
在过去的几十年里,音乐、电影和电视产业中对知识产权的关注变得越来越多。3D打印技术也会涉及到这一问题,因为现实中的很多东西都会得到更 加广泛的传播。人们可以随意复制任何东西,并且数量不限。如何制定3D打印的法律法规用来保护知识产权,也是我们面临的问题之一,否则就会出现泛滥的现象。
道德的挑战
道德是底线。什么样的东西会违反道德规律是很难界定的,如果有人打印出生物器官和活体组织,在不久的将来会遇到极大的道德挑战。
花费的承担
3D打印技术需要承担的花费是高昂的。第一台3D打印机的售价为1万5。如果想要普及到大众,降价是必须的,但又会与成本形成冲突。
每一种新技术诞生初期都会面临着这些类似的障碍,但相信找到合理的解决方案3D打印技术的发展将会更加迅速,就如同任何渲染软件一样,不断地更新才能达到最终的完善。
社会评价
3D打印技术是无法应用于大量生产,所以有些专家鼓吹3D打印是第三次工业革命,这个说法只是个
噱头。
富士康为苹果代工生产iPhone已经多年。郭台铭以3D打印制造的手机为例,说明3D打印的产品只能看不能用,因为这些产品上不能加上电子元器件,无法为电子产品量产。3D打印即使不生产电子产品,但受材料的限制,可以生产的其他产品也很少,“即使生产出来的产品,也无法
量产,而且一摔就碎。
“3D打印的确更适合一些小规模制造,尤其是高端的定制化产品,比如汽车零部件制造。虽然主要材料还是塑料,但未来金属材料肯定会被运用到3D打印中来,”克伦普说,3D打印技术先后进入了牙医、珠宝、医疗行业,未来可应用的范围会越来越广。2014年11月末,3D打印技术被《
时代》周刊为2014年25项年度最佳发明。对消费者和企业而言,这是个福音。仅在过去一年中,中学生们3D打印了用于物理课实验的火车车厢,科学家们3D打印了人类器官组织,通用电气公司则使用3D打印技术改进了其喷气引擎的效率。美国三维系统公司的3D打印机能打印糖果和乐器等,该公司首席执行官阿维·赖兴塔尔说:“这的确是一种巧夺天工的技术。”
应用领域
国际空间
2018年12月3日,这台名为Organaut的突破性3D打印装置,执行“58号远征”(Expedition 58)任务的“联盟MS-11”飞船送往国际空间站。打印机由Invitro的子公司“3D生物打印解决方案”(3D Bioprinting Solutions)公司建造。Invitro随后收到了从国际空间站传回的一组照片,通过这些照片可以看到老鼠甲状腺是如何被打印出来的。美国计划于2019年春季将生物打印机送上国际空间站。
2020年5月5日,中国首飞成功的长征五号B运载火箭上,搭载着新一代载人飞船试验船,船上还搭载了一台“3D打印机”。这是中国首次太空3D打印实验,也是国际上第一次在太空中开展连续纤维增强复合材料的3D打印实验。
2024年6月20日消息,欧洲空间局科学家首次借助3D金属打印技术,在国际空间站上成功打印出一条小型S曲线。这一突破标志着在轨制造领域的巨大飞跃。
海军舰艇
2014年7月1日,美国海军试验了利用3D打印等先进制造技术快速制造舰艇零件,希望借此提升执行任务速度并降低成本。
2014年6月24日至6月26日,美海军在作战指挥系统活动中举办了第一届制汇节,开展了一系列“打印舰艇”研讨会,并在此期间向水手及其他相关人员介绍了3D打印及增材制造技术。
美国海军致力于未来在这方面培训水手。采用3D打印及其他先进制造方法,能够显著提升执行任务速度及预备状态,降低成本,避免从世界各地采购舰船配件。
美国海军作战舰队后勤科副科长Phil Cullom表示,考虑到成本及海军后勤及供应链现存的漏洞,以及面临的资源约束,先进制造与3D打印的应用越来越广,他们设想了一个由技术娴熟的水手支持的先进制造商的全球网络,找出问题并制造产品。
航天科技
2014年9月底,NASA预计将完成首台成像望远镜,所有元件基本全部通过3D打印技术制造。NASA也因此成为首家尝试使用3D打印技术制造整台仪器的单位。
这款太空望远镜功能齐全,其50.8毫米的摄像头使其能够放进
立方体卫星(CubeSat,一款微型卫星)当中。据了解,这款太空望远镜的外管、外挡板及光学镜架全部作为单独的结构直接打印而成,只有镜面和镜头尚未实现。该仪器将于2015年开展震动和热真空测试。
这款长50.8毫米的望远镜将全部由铝和钛制成,而且只需通过3D打印技术制造4个零件即可,相比而言,传统制造方法所需的零件数是3D打印的5-10倍。此外,在3D打印的望远镜中,可将用来减少望远镜中杂散光的仪器挡板做成带有角度的样式,这是传统制作方法在一个零件中所无法实现的。
2014年8月31日,美国宇航局的工程师们刚刚完成了3D打印火箭喷射器的测试,本项研究在于提高火箭发动机某个组件的性能,由于喷射器内液态氧和气态氢一起混合反应,这里的燃烧温度可达到6000华氏度,大约为3315摄氏度,可产生2万磅的推力,约为9吨左右,验证了3D打印技术在火箭发动机制造上的可行性。本项测试工作位于阿拉巴马亨茨维尔的美国宇航局马歇尔太空飞行中心,这里拥有较为完善的火箭发动机测试条件,工程师可验证3D打印部件在点火环境中的性能
制造火箭发动机的喷射器需要精度较高的加工技术,如果使用3D打印技术,就可以降低制造上的复杂程度,在计算机中建立喷射器的三维图像,打印的材料为金属粉末和激光,在较高的温度下,金属粉末可被重新塑造成我们需要的样子。火箭发动机中的喷射器内有数十个喷射元件,要建造大小相似的元件需要一定的加工精度,该技术测试成功后将用于制造RS-25发动机,其作为美国宇航局未来太空发射系统的主要动力,该火箭可运载宇航员超越近地轨道,进入更遥远的深空。马歇尔中心的工程部主任克里斯认为3D打印技术在火箭发动机喷油器上应用只是第一步,我们的目的在于测试3D打印部件如何能彻底改变火箭的设计与制造,并提高系统的性能,更重要的是可以节省时间和成本,不太容易出现故障。本次测试中,两具火箭喷射器进行了点火,每次5秒,设计人员创建的复杂几何流体模型允许氧气和氢气充分混合,压力为每平方英寸1400磅。
2014年10月11日,英国一个发烧友团队用3D打印技术制出了一枚火箭,他们还准备让这个世界上第一个打印出来的火箭升空。该团队于当地时间在伦敦的办公室向媒体介绍这个世界第一架用3D打印技术制造出的火箭。团队队长海恩斯说,有了3D打印技术,要制造出高度复杂的形状并不困难。就算要修改设计原型,只要在计算机辅助设计的软件上做出修改,打印机将会做出相对的调整。这比之前的传统制造方式方便许多。既然美国宇航局已经在使用3D打印技术制造火箭的零件,3D打印技术的前景是十分光明的。
据介绍,这个名为“低轨道氦辅助导航”的工程项目由一家德国数据分析公司赞助。打印出的这枚火箭重3公斤,高度相当于一般成年人身高,是该团队用4年时间、花了6000英镑制造出来的。等一笔1.5万英镑的资助确定之后,他们将于今年底在新墨西哥州的美国航天港发射该火箭。一个装满氦的巨型气球将把火箭提升到20000米高空,装置在火箭里的全球定位系统将启动火箭引擎,火箭喷射速度将达到每小时1610公里。之后,火箭上的自动驾驶系统将引导火箭回返地球,而里头的摄像机将把整个过程拍摄下来。
美国国家航空航天局(NASA)官网2015年4月21日报道,NASA工程人员正通过利用增材制造技术制造首个全尺寸铜合金火箭发动机零件以节约成本,NASA空间技术任务部负责人表示,这是航空航天领域3D打印技术应用的新里程碑。
2015年6月22日报道,国营企业俄罗斯技术集团公司以3D打印技术制造出一架无人机样机,重3.8公斤,翼展2.4米,飞行时速可达90至100公里,续航能力1至1.5小时。
公司发言人弗拉基米尔·库塔霍夫介绍,公司用两个半月实现了从概念到原型机的飞跃,实际生产耗时仅为31小时,制造成本不到20万卢布(约合3700美元)。
2016年4月19日,中科院重庆绿色智能技术研究院3D打印技术研究中心对外宣布,经过该院和中科院空间应用中心两年多的努力,并在法国波尔多完成抛物线失重飞行试验,国内首台空间在轨3D打印机宣告研制成功。这台3D打印机可打印最大零部件尺寸达200×130mm,它可以帮助宇航员在失重环境下自制所需的零件,大幅提高空间站实验的灵活性,减少空间站备品备件的种类与数量和运营成本,降低空间站对地面补给的依赖性。
2023年3月22日,美国相对航天公司在佛罗里达州卡纳维拉尔角发射一枚“3D打印火箭”,但火箭未能进入预定轨道。这枚火箭高约33.5米,包括发动机在内,火箭85%的组件由合金金属材料3D打印而成,为全球首例。
医学领域
医学界的3D打印是根据患者需求进行个性化护理的优秀工具,可同时简化医生、护士、药剂师等专业人员的操作。配备3D打印机的未来医院将能复制数万个医疗设备的模型,其中包含描述制造过程的技术文件和产品符合要求的验证。目前,3D打印在医疗保健行业中的一些应用主要是打印设备(辅助设备、注射器、手术器械);打印解剖结构以方便术前培训;打印定制部件(假肢、牙冠、移植物)以及生物打印。
3D打印肝脏模型
日本筑波大学和
大日本印刷公司组成的科研团队2015年7月8日宣布,已研发出用3D打印机低价制作可以看清血管等内部结构的肝脏立体模型的方法。据称,该方法如果投入应用就可以为每位患者制作模型,有助于术前确认手术顺序以及向患者说明治疗方法。
这种模型是根据CT等医疗检查获得患者数据用3D打印机制作的。模型按照表面外侧线条呈现肝脏整体形状,详细地再现其内部的血管和肿瘤。
由于肝脏模型内部基本是空洞,重要血管等的位置一目了然。据称,制作模型需要少量价格不菲的树脂材料,使原本约30万至40万日元(约合人民币1.5万至2万元)的制作费降到原先的三分之一以下。
利用3D打印技术制作的内脏器官模型主要用于研究,由于价格高昂,在临床上没有得到普及。科研团队表示,他们一方面争取到2016年度实现肝脏模型的实际应用,另一方面将推进对胰脏等器官模型制作技术的研发。
3D打印头盖骨
2014年8月28日,46岁的周至农民胡师傅在自家盖房子时,从3层楼坠落后砸到一堆木头上,左脑盖被撞碎,在当地医院手术后,胡师傅虽然性命无损,但左脑盖凹陷,在别人眼里成了个“半头人”。
除了面容异于常人,事故还伤了胡师傅的视力和语言功能。医生为帮其恢复形象,采用3D打印技术辅助设计缺损颅骨外形,设计了钛金属网重建缺损颅眶骨,制作出缺损的左“脑盖”,最终实现左右对称。
医生称手术约需5至10小时,除了用钛网支撑起左边脑盖外,还需要从腿部取肌肉进行填补。手术后,胡师傅的容貌将恢复,至于语言功能还得术后看恢复情况。
3D打印脊椎植入人体
2014年8月,北京大学研究团队成功地为一名12岁男孩植入了3D打印脊椎,这属全球首例。据了解,这位小男孩的脊椎在一次足球受伤之后长出了一颗恶性肿瘤,医生不得不选择移除掉肿瘤所在的脊椎。不过,这次的手术比较特殊的是,医生并未采用传统的脊椎移植手术,而是尝试先进的3D打印技术。
研究人员表示,这种植入物可以跟现有骨骼非常好地结合起来,而且还能缩短病人的康复时间。由于植入的3D脊椎可以很好地跟周围的骨骼结合在一起,所以它并不需要太多的“锚定”。此外,研究人员还在上面设立了微孔洞,它能帮助骨骼在合金之间生长,换言之,植入进去的3D打印脊椎将跟原脊柱牢牢地生长在一起,这也意味着未来不会发生松动的情况。
3D打印手掌治疗残疾
2014年10月,医生和科学家们使用3D打印技术为英国苏格兰一名5岁女童装上手掌。
这名女童名为海莉·弗雷泽,出生时左臂就有残疾,没有手掌,只有手腕。在医生和科学家的合作下,为她设计了专用假肢并成功安装。
3D打印心脏救活2周大先心病婴儿
2014年10月13日,纽约长老会医院的埃米尔·巴查博士(Dr.Emile Bacha)医生就讲述了他使用3D打印的心脏救活一名2周大婴儿的故事。这名婴儿患有先天性心脏缺陷,它会在心脏内部制造“大量的洞”。在过去,这种类型的手术需要停掉心脏,将其打开并进行观察,然后在很短的时间内来决定接下来应该做什么。
但有了3D打印技术之后,巴查医生就可以在手术之前制作出心脏的模型,从而使他的团队可以对其进行检查,然后决定在手术当中到底应该做什么。这名婴儿原本需要进行3-4次手术,而现在一次就够了,这名原本被认为寿命有限的婴儿可以过上正常的生活。
巴查医生说,他使用了婴儿的MRI数据和3D打印技术制作了这个心脏模型。整个制作过程共花费了数千美元,不过他预计制作价格会在未来降低。
3D打印技术能够让医生提前练习,从而减少病人在手术台上的时间。3D模型有助于减少手术步骤,使手术变得更为安全。
2015年1月,在迈阿密儿童医院,有一位患有“完全型肺静脉畸形引流(TAPVC)”的4岁女孩Adanelie Gonzalez,由于疾病她的呼吸困难免疫系统薄弱,如果不实施矫正手术仅能存活数周甚至数日。
心血管外科医生借助3D心脏模型的帮助,通过对小女孩心脏的完全复制3D模型,成功地制定出了一个复杂的矫正手术方案。最终根据方案,成功地为小女孩实施了永久手术,现在小女孩的血液恢复正常流动,身体在治疗中逐渐恢复正常。
3D打印制药
2015年8月5日,首款由Aprecia制药公司采用3D打印技术制备的SPRITAM(
左乙拉西坦,levetiracetam)速溶片得到
美国食品药品监督管理局(FDA)上市批准,并将于2016年正式售卖。这意味着3D打印技术继打印人体器官后进一步向制药领域迈进,对未来实现精准性制药、针对性制药有重大的意义。该款获批上市的“左乙拉西坦速溶片”采用了Aprecia公司自主知识产权的ZipDose3D打印技术。
通过
3D打印制药生产出来的药片内部具有丰富的孔洞,具有极高的内表面积,故能在短时间内迅速被少量的水融化。这样的特性给某些具有吞咽性障碍的患者带来了福音。
这种设想主要针对病人对药品数量的需求问题,可以有效地减少由于药品库存而引发的一系列药品发潮变质、过期等问题。事实上,
3D打印制药最重要的突破是它能进一步实现为病人量身定做药品的梦想。
3D打印胸腔
最近科学家们为传统的3D打印身体部件增添了一种钛制的胸骨和胸腔—
3D打印胸腔。
这些3D打印部件的幸运接受者是一位54岁的西班牙人,他患有一种胸壁肉瘤,这种肿瘤形成于骨骼、软组织和软骨当中。医生不得不切除病人的胸骨和部分肋骨,以此阻止癌细胞扩散。
这些切除的部位需要找到替代品,在正常情况下所使用的金属盘会随着时间变得不牢固,并容易引发并发症。澳大利亚的CSIRO公司创造了一种钛制的胸骨和肋骨,与患者的几何学结构完全吻合。
CSIRO公司根据病人的CT扫描设计并制造所需的身体部件。工作人员会借助CAD软件设计身体部分,输入到3D打印机中。手术完成两周后,病人就被允许离开医院了,而且一切状况良好。
3D血管打印机
2015年10月,中国863计划3D打印血管项目取得重大突破,世界首创的3D生物血管打印机由四川蓝光英诺生物科技股份有限公司成功研制问世。
该款血管打印机性能先进,仅仅2分钟便打出10厘米长的血管。不同于市面上现有的3D生物打印机,3D生物血管打印机可以打印出血管独有的中空结构、多层不同种类细胞,这是世界首创。
美3D打印生物工程脊髓
2018年8月,美国明尼苏达大学研究人员开发出一种新的多细胞神经组织工程方法,利用3D打印设备制出生物工程脊髓。研究人员称,该技术有朝一日或可帮助长期遭受脊髓损伤困扰的患者恢复某些功能。
美3D打印心脏肌泵
2020年7月,
美国明尼苏达大学研究人员在最新一期《循环研究》杂志上发表报告称,他们在实验室中用人类细胞3D打印出了功能正常的厘米级人体心脏肌泵模型。研究人员称,这种能够发挥正常功能的心脏肌泵模型系统对于心脏病研究来说具有重要意义,而他们的成果向制造人类心脏这样的大型腔室模型迈出了关键一步。
3D打印乳腺癌肿瘤模型
2022年,美国科学家首次成功地对乳腺癌肿瘤进行了3D生物打印。
房屋建筑
2014年8月,10幢3D打印建筑在上海
张江高新青浦园区内交付使用,作为当地动迁工程的办公用房。这些“打印”的建筑墙体是用建筑垃圾制成的特殊“油墨”,按照电脑设计的图纸和方案,经一台大型3D打印机层层叠加喷绘而成,10幢小屋的建筑过程仅花费24小时。
2014年9月5日,世界各地的建筑师们正在为打造全球首款3D打印房屋而竞赛。3D打印房屋在住房容纳能力和房屋定制方面具有意义深远的突破。在荷兰首都阿姆斯特丹,一个建筑师团队已经开始制造全球首栋3D打印房屋,而且采用的建筑材料是可再生的生物基材料。这栋建筑名为“运河住宅(Canal House)”,由13间房屋组成。这个项目位于阿姆斯特丹北部运河的一块空地上,有望3年内完工。在建中的“运河住宅”已经成了公共博物馆,美国总统奥巴马曾经到那里参观。荷兰DUS建筑师汉斯·韦尔默朗(Hans Vermeulen)在接受BI采访时表示,他们的主要目标是“能够提供定制的房屋。”
2014年1月,数幢使用3D打印技术建造的建筑亮相苏州工业园区。这批建筑包括一栋面积1100平方米的别墅和一栋6层居民楼。这些建筑的墙体由大型3D打印机层层叠加喷绘而成,而打印使用的“油墨”则由建筑垃圾制成。
2015年7月17日上午,由3D打印的模块新材料别墅现身西安,建造方在三个小时完成了别墅的搭建。据建造方介绍,这座三个小时建成的精装别墅,只要摆上家具就能拎包入住。
汽车行业
2014年9月15日,世界上已经出现3D打印建筑、裙帽以及珠宝等,第一辆3D打印汽车也终于面世。这辆汽车只有40个零部件,建造它花费了44个小时,最低售价1.1万英镑(约合人民币11万元)。
世界第一台3D打印车已经问世——这辆由美国Local Motors公司设计制造、名叫“Strati”的小巧两座家用汽车开启了汽车行业新篇章。这款创新产品在为期六天的2014美国芝加哥国际制造技术展览会上公开亮相。
用3D打印技术打印一辆斯特拉提轿车并完成组装需时44小时。整个车身上靠3D打印出的部件总数为40个,相较传统汽车20000多个零件来说可谓十分简洁。充满曲线的车身由先由黑色塑料制造,再层层包裹碳纤维以增加强度,这一制造设计尚属首创。汽车由电池提供动力,最高时速约64公里,车内电池可供行驶190至240公里。
尽管汽车的座椅、轮胎等可更换部件仍以传统方式制造,但用3D制造这些零件的计划已经提上日程。制造该轿车的车间里有一架超大的3D打印机,能打印长3米、宽1.5米、高1米的大型零件,而普通的3D打印机只能打印25立方厘米大小的东西。
2014年10月29日,在芝加哥举行的国际制造技术展览会上,美国亚利桑那州的Local Motors汽车公司现场演示世界上第一款3D打印电动汽车的制造过程。这款电动汽车名为“Strati”,整个制造过程仅用了45个小时。Strati采用一体成型车身,最大速度可达到每小时40英里(约合每小时64公里),一次充电可行驶120到150英里(约合190到240公里)。Strati只有49个零部件,动力传动系统、悬架、电池、轮胎、车轮、线路、电动马达和挡风玻璃采用传统技术制造,包括底盘、仪表板、座椅和车身在内的余下部件均由3D打印机打印,所用材料为碳纤维增强热塑性塑料。Strati的车身一体成型,由3D打印机打印,共有212层碳纤维增强热塑性塑料。辛辛那提公司负责提供制造Strati使用的大幅面增材制造3D打印机,能够打印3英尺×5英尺×10英尺(约合90厘米×152厘米×305厘米)的零部件。
最近来自美国旧金山的Divergent Microfactories(DM)公司推出了世界上首款3D打印超级跑车“刀锋(Blade)”。该公司表示此款车由一系列铝制“节点”和碳纤维管材拼插相连,轻松组装成汽车底盘,因此更加环保。
Blade 搭载一台可使用汽油或压缩天然气为燃料的双燃料700马力发动机。此外由于整车质量很轻,整车质量仅为1400磅(约合0.64吨),从静止加速到每小时60英里(96公里)仅用时两秒,轻松跻身顶尖超跑行列。
2015年7月,美国旧金山的Divergent Microfactories(DM)公司推出了世界上首款3D打印超级跑车“刀锋(Blade)”。
电子行业
2014年11月10日,全世界首款3D打印的笔记本电脑已开始预售了,它允许任何人在自己的客厅里打印自己的设备,价格仅为传统产品的一半。
这款笔记本电脑名为Pi-Top,将会到2015年五月才会正式推出。但是,通过口耳相传,它已在两周内累计获得了7.6万英镑的预订单。
发展方向
标准和标准的制定机构
当一间实验室作出了图纸,需要拿出来共享时,会发现有太多的格式和标准了,因此,3D 打印原型机这个领域看起来像是野蛮生长,毫无标准。
开源的设计、配置和软件
当有了统一的标准后,3D 打印行业将会迎来开源。太多的团队注重提高自己的3D 打印水平,在自我的闭环中发展。实际上,行业需要设备和软件的开源,在统一的标准下产生更多有用、高效、开放的创新。
原型机实验室
原型机打印并不受到重视,所以很多医疗器械商都是在一个脏乱、布满灰尘的地方放置打印设备。其实,现在已经有商业化运营的3D 打印实验室,来帮助这些企业打印出质量更高的原型机。
2023年,麻省理工学院工程师团队开发出一种程序,可3D打印患者柔软而灵活的心脏复制品,并可控制其泵送动作,以模仿患者的泵血能力;伦斯勒理工学院科学家团队首次在实验室培养的人类皮肤组织中3D打印出毛囊。
政策引领
2015年8月23日,中共
中央政治局常委、
国务院总理
李克强主持国务院专题讲座,讨论加快发展先进制造与3D打印等问题。