圆系方程
表示圆系共同形式的几何方程
圆系方程是一种特殊的方程。在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。
简要说明
理解
理解:1.例题:求x+(m+1)y+m=0所过定点
解:可将原式化为x+y+m(y+1)=0
即为x+y=0;y+1=0
解得恒过点(1,-1)
由此理解到当除了x,y(为一次幂)还有一未知数m时,依然可求得一定点。
由此可联想:当有二次方程组x2+y2+D1x+E1y+F1=0与x2+y2+D2x+E2y+F2=0便能求出两定点。
过一已知圆与一直线的两个交点的圆系方程为:
x2+y2+D1x+E1y+F1+λ(Ax+By+C)=0
理解2:有二次方程组x2+y2+D1x+E1y+F1=0 ①式
x2+y2+D2x+E2y+F2=0 ②式
①式+②式得x2+y2+D1x+E1y+F1+x2+y2+D2x+E2y+F2=0
此方程仅符合交点坐标(即带入交点后成立)
加入参数λ让方程代表恒过两点的所有圆。
例题
例2:求过两圆x^2+y^2=25和(x-1)^2+(y-1)^2=16的交点且面积最小的圆的方程。
分析:本题若先联立方程求交点,再设所求圆方程,寻求各变量关系,求半径最值,虽然可行,但运算量较大。自然选用过两圆交点的圆系方程简便易行。为了避免讨论,先求出两圆公共弦所在直线方程。则问题可转化为求过两圆公共弦及圆交点且面积最小的圆的问题。
解:圆x^2+y^2=25和(x-1)^2+(y-1)^2=16的公共弦方程为
x^2+y^2-25-[(x-1)^2+(y-1)^2-16]=0,即2x+2y-11=0
过直线2x+2y-11=0与圆x^2+y^2=25的交点的圆系方程为
x^2+y^2-25+λ(2x+2y-11)=0,即x^2+y^2+2λy+2λx-(11λ+25)=0
依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心(-λ,-λ)必在公共弦所在直线2x+2y-11=0上。即-2λ-2λ-11=0,则λ=-11/4
代回圆系方程得所求圆方程(x-11/4)^2+(y-11/4)^2=79/8
总结
圆系方程的主要智慧是将参数的形态放置在图像中。
参数不仅可在一次环境中表示一个变量,可在直角坐标系中表示一条数轴,还可让二次图像以一定的条件变化成无数条函数图像
应用
应用一:求圆方程
应用二:证明四点共圆
参考资料
最新修订时间:2023-08-02 11:51
目录
概述
简要说明
参考资料