参数化设计是Revit Building的一个,它分为两个部分:参数化
图元和参数化修改引擎。Revit Building中的图元都是以构件的形式出现,这些构件之间的不同,是通过参数的调整反映出来的,参数保存了图元作为数字化
建筑构件的所有信息。参数化修改引擎提供的参数更改技术使用户对
建筑设计或文档部分作的任何改动都可以自动的在其它相关联的部分反映出来,采用智能建筑构件、视图和注释符号,使每一个构件都通过一个变更传播引擎互相关联。构件的移动、删除和尺寸的改动所引起的参数变化会引起
相关构件的参数产生关联的变化,任一视图下所发生的变更都能参数化的、双向的传播到所有视图,以保证所有图纸的一致性,毋须逐一对所有视图进行修改。从而提高了
工作效率和
工作质量。
用方法
开发产品时,零件
设计模型的建立速度是决定整个
产品开发效率的关键。产品开发初期,零件形状和尺寸有一定模糊性,要在装配验证、
性能分析和
数控编程之后才能确定。这就希望零件模型具有易于修改的柔性。参数化设计方法就是将模型中的定量信息变量化,使之成为任意调整的参数。对于变量化参数赋予不同数值,就可得到不同大小和形状的零件模型。
在CAD中要实现参数化设计,参数化模型的建立是关键。参数化
模型表示了零件图形的几何约束和工程约束。几何约束包括结构约束和尺寸约束。结构约束是指几何元素之间的拓扑约束关系,如平行、垂直、相切、对称等;尺寸约束则是通过尺寸标注表示的约束,如距离尺寸、角度尺寸、半径尺寸等。工程约束是指尺寸之间的约束关系,通过定义
尺寸变量及它们之间在数值上和逻辑上的关系来表示。
在参数化设计系统中,设计人员根据工程关系和几何
关系来指定设计要求。要满足这些设计要求,不仅需要考虑尺寸或工程参数的初值,而且要在每次改变这些设计参数时来维护这些基本关系,即将参数分为两类:其一为各种尺寸值,称为可变参数;其二为几何元素间的各种连续几何信息,称为不变参数。参数化设计的本质是在可变参数的作用下,系统能够自动维护所有的不变参数。因此,参数化模型中建立的各种约束关系,正是体现了设计人员的设计意图。
参数化设计可以大大提高模型的生成和修改的速度,在产品的系列设计、相似设计及专用
CAD系统开发方面都具有较大的应用价值。参数化设计中的
参数化建模方法主要有变量几何法和基于结构生成历程的方法,前者主要用于平面模型的建立,而后者更适合于三维实体或曲面模型。
参数化设计是在
变量化设计思想产生以后出现的,要了解参数化设计的历史必须追溯变量化设计的由来。变量化设计一词是美国
麻省理工学院Gossard教授提出的,他采用
非线性约束方程组的联立求解,设定初值后用
牛顿迭代法精化,这种方法的最大优点在于通用性强,
约束方程的内容不限,除了
几何约束以外还可以引入力学、
运动学、动力学等关系,但其存在一个不可逾越的障碍:非线性方程组的行秩有可能不等于列秩,从而导致方程组无解(需要说明的是:在将来这个障碍可能随着
数学方法的改进而消失)。这种方法过早地把几何约束映射为
代数方程组,使
问题求解的规模和速度难以得到
有效控制。英国
剑桥大学Johnson从1990年起着手研究
机械结构的
功能建模时同样联立求解一组
线性方程组,从多个
可行解中寻求
最优解。所不同的是,他尝试了
遗传算法和
模拟退火算法,认为后者的效果更好。
Gossard的倡导在当时CAD界并未引起重视,直到1987年底PARAMETRIC-TECHNOLOGY公司推出了以参数化、变量化、特征设计为基础的新一代
实体造型软件PRO/ENGINEER后,CAD界才真正认识到
变量化设计的真正威力,纷纷仿效。变量设计成了新的CAD标准。同年,从
麻省理工学院毕业的几位博士创办了Premise公司,认真实现Gossard的理论思想,形成了微机和Windows环境下的商品软件,称作DesignView。1989年秋进入市场,随后CV公司吸收了DesignView,成为CV的
系列产品。80年代初,针对CAD/CAM集成的需要,人们开始了对特征和特征造型的研究。由于各种特征是从具体应用中抽象、总结出来的,有先天的家族性,所以参数化设计是特征应用的一个重要前提。80年代中后期,PARAMETRICTECHNOLOGY和SDRC等公司都开发出了以特征为对象的特征造型系统(PRO/ENGINEER和I-DEAS)。这些系统都能在一定范围内实现对特征的
参数设计。
SDRC公司在1991年,其I-DEAS第六版的DRAFT模块中提出了一项新的
交互作用技术:“
动态导航技术”,该技术利用从
工程制图标准抽象出来的规则预测下一步操作的可能,大大方便了操作。动态导航技术和参数化技术己成为大多数
CAD系统的主要功能和目标。在现有的三维CAD系统中,他们大致是这样实现的:利用动态导航技术或其它草图技术迅速生成用以构造三维特征的二维轮廓(PROFILE),这个轮廓准确的位置和尺寸都不必在草图输入时给出,而可以在以后的参数设计过程中得到。再利用系统的拉深或回转等其它手段来生成三维特征。有了这个基础,再加上一棵记录造型过程的CSG树,就可完成对最后模型的“参数”设计。但值得强调的是,这里的参数并不是最后模型的设计参数,而是完成造型过程的造型参数。
正是由于三维参数化特征造型系统的设计参数和造型参数有很大的不同,虽然很多系统都声称是全双向可逆(FULLYBIDIRECTION)的,但实际上它们通过投影直接生成的二维图距离最终的
工程图纸要求还差得很远。特别是
尺寸标注,它可以通过
投影控制特征参数在二维图形上的投影,但却无法对最终工程图的尺寸进行真正的参数设计。在三维CAD系统中,
动态导航仅被用来生成二维轮廓。这里论述的参数设计也主要是针对这个二维轮廓进行的。由于这个二维轮廓只是用来生成三维特征,它远比我们在二维CAD系统中要处理的工程图简单得多。
显然,要实现对
二维工程图的参数化设计/绘图工作从一定意义上讲比在三维环境下更为困难。许多CAD工作者围绕如何将
概念设计和参数设计引进传统的二维CAD系统进行了大量的研究。
常用的参数化设计CAD软件中,主流的应用软件有
Pro/Engineer、
UGNX、
CATIA和
Solidworks四大软件,四大软件各有特点并在不同的领域分别占据一定的
市场份额。Pro/Engineer是参数化设计的鼻祖,参数化设计的实现最先就是由Pro/Engineer实现,而Pro/Engineer也因为参数化的特点在横空出世后迅速抢占了传统CAD软件巨头UG和CATIA的部分市场份额,主要应用于
消费电子、小家电和日用品、发动机设计等行业;UG和CATIA两个传统的软件巨头也不甘落后,紧随Pro/Engineer之后加入了参数化设计的功能,在传统的制造行业比如汽车、
航空航天等行业上两个软件占据绝对的市场份额。