分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
常见两种方法
(1)队列式(FIFO)分支限界法
按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法
按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
方法区别
分支限界法与回溯法的不同
(1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
(2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。
解空间树
解空间树的动态搜索
(1)回溯求解0/1
背包问题,虽剪枝减少了搜索空间,但整个搜索按深度优先机械进行,是
盲目搜索(不可预测本结点以下的结点进行的如何)。
(2)回溯求解TSP也是盲目的(虽有
目标函数,也只有找到一个
可行解后才有意义)
(3)分支限界法首先确定一个合理的限界函数,并根据限界函数确定目标函数的界[down, up];然后按照
广度优先策略遍历问题的解空间树,在某一分支上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值(对最小化问题,估算结点的down,对最大化问题,估算结点的up)。如果某孩子结点的目标函数值超出目标函数的界,则将其丢弃(从此结点生成的解不会比如今已得的更好),否则入待处理表。
设计思路
设求解最大化问题,
解向量为X=(x1,…,xn),xi的
取值范围为Si,|Si|=ri。在使用
分支限界搜索问题的解空间树时,先根据限界函数估算
目标函数的界[down, up],然后从
根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。
对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即:
bound(x1)≥bound(x1,x2)≥…≥ bound(x1,…,xn)
若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。
再取PT表中目标函数
极大值结点作为扩展的
根结点,重复上述。
直到一个
叶子结点时的
可行解X=(x1,…,xn),及目标函数值bound(x1,…,xn)。
搜索策略
在当前节点(扩展节点)处,先生成其所有的子节点(分支),然后再从当前的活节点(当前节点的子节点)表中选择下一个扩展节点。为了有效地选择下一个扩展节点,加速搜索的进程,在每一个活节点处,计算一个函数值(限界),并根据函数值,从当前活节点表中选择一个最有利的节点作为扩展节点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。分支限界法解决了大量离散最优化的问题。