分形理论
本华·曼德博提出的理论
分形理论(Fractal Theory)是当今十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家本华·曼德博(法语:Benoit B. Mandelbrot)首先提出的。分形理论的数学基础分形几何学,即由分形几何衍生出分形信息、分形设计、分形艺术等应用。
定义
1967年,Mandelbrot在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长。统计自相似和分数维度》(How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension)的著名论文。海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、粒子的布朗运动树冠、花菜、大脑皮层……Mandelbrot把这些部分与整体以某种方式相似的形体称为分形(fractal)。1975年,他创立了分形几何学(Fractal Geometry)。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论。
原则
线性分形又称为自相似分形。自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科赫曲线(Koch snowflake)、谢尔宾斯基地毯(Sierpinski carpet)等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。
这里再进一步介绍分形的分类,根据自相似性的程度,分形可以分为有规分形和无规分形,有规分形是指具体有严格的自相似性,即可以通过简单的数学模型来描述其相似性的分形,比如三分康托集、Koch曲线等;无规分形是指具有统计学意义上的自相似性的分形,比如曲折连绵的海岸线,漂浮的云朵等。
分形模型
cantor(康托)三分集
1883年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集,或称康托尔集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图1)。其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去, 最后剩下的各个小区间段就构成了三分康托集。 三分康托集的豪斯多夫维是0.6309。
Koch 曲线
1904年,瑞典数学家柯赫构造了 “Koch曲线几何图形。Koch曲线大于一维,具有无限的长度,但是又小于二维。它和三分康托集一样,是一个典型的分形。根据分形的次数不同,生成的Koch 曲线也有很多种,比如三次 Koch 曲线,四次 Koch 曲线等。下面以三次 Koch 曲线为例,介绍 Koch 曲线的构造方法,其它的可依此类推。三次Koch曲线的构造过程主要分为三大步骤:第一步,给定一个初始图形——一条线段;第二步,将这条线段中间的 1/3 处向外折起;第三步,按照第二步的方法不断的把各段线段中间的 1/3 处向外折起。这样无限的进行下去,最终即可构造出Koch曲线。其图例构造过程如图2所示(迭代了 5 次的图形)。
Julia 集
Julia 集是由法国数学家 Gaston Julia 和 Pierre Faton 在发展了复变函数迭代的基础理论后获得的。Julia 集也是一个典型的分形,只是在表达上相当复杂,难以用古典的数学方法描述。朱利亚集合由一个复变函数生成,其中c为常数。
尽管这个复变函数看起来很简单,然而它却能够生成很复杂的分形图形。
图3为朱利亚集合生成的图形,由于c可以是任意值,所以当c取不同的值时,制出的图形也不相同。
分维作用
分维,又称分形维或分数维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢。
显然,并没有绳球从三维对象变成一维对象的确切界限。数学家豪斯道夫(Hausdorff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是自然数,也可以是正有理数或正无理数,称为豪斯道夫维数。记作Df,一般的表达式为:K=L^Df,也作K=(1/L)^(-Df),取自然对数并整理得Df=lnK/lnL,其中L为某客体沿其每个独立方向皆扩大的倍数,K为得到的新客体是原客体的倍数。Df在一般情况下不一定是自然数。因此,曼德布罗特也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。英国的海岸线为什么测不准。因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维,海岸线的长度就确定了。
意义
上世纪80年代初开始的“分形热”经久不息。分形作为一种新的概念和方法,正在许多领域开展应用探索。美国物理学大师约翰·惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。 中国著名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。 分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义。
注:分形理论好比拿着显微镜看一公里有多长只适用于科学研究,对于学习和现实生活中的长度,我们所采用的依然是理想情况下的约定俗成。
参考资料
最新修订时间:2024-11-02 22:57
目录
概述
定义
参考资料