魔方阵,古代又称“
纵横图”,是指组成元素为
自然数1、2、…、n的
平方的n×n的
方阵,其中每个元素值都不相等,且每行、每列以及主、副对角线上各n个元素之和都相等。
简介
幻方,有时又称
魔方(该称呼现一般指立方体的魔术方块)或纵横图,由一组排放在正方形中的
整数组成,其每行、每列以及两条对角线上的数之和均相等。通常幻方由从1到N2的连续整数组成,其中N为正方形的行或列的数目。因此 N阶幻方有N行N列,并且所填充的数为从1到N2。
幻方可以使用N阶方阵来表示,方阵的每行、每列以及两条对角线的和都等于常数 ,如果填充数为 ,那么有
⒈何谓矩阵?矩阵就是由方程组的系数及常数所构成的方阵。把用在解
线性方程组上既方便,又直观。
⒉何谓n阶方阵?若一个矩阵是由n个横列与n个纵行所构成,共有n*n个小方格,则称这个方阵是一个n阶方阵。
⒊何谓魔方阵? 定义:由n*n个数字所组成的n阶方阵,具有各对角线,各横列与纵行的数字和都相等的性质,称为魔方阵。而这个相等的和称为
魔术数字。若填入的数字是从1到n*n,称此种魔方阵为n阶正规魔方阵。
⒋最早的魔方阵相传古时为了帮助治水专家大禹统治天下,由水中浮出两只庞大动物背上各负有一图,只有大禹才可指挥其中之由龙马负出的为河图,出自
黄河;另一由理龟负出的洛书出自
洛河。
⒌最早的四阶魔方阵相传是刻在印度一所庙宇石上,年代大约是十一世纪。古代印度人十分崇拜这种
幻方,至今从古神殿的遗址,墓碑上常常还可以发现四阶幻方的遗迹。
⒍欧洲最早的魔方阵是公元1514年德国画家Albrecht Dure在他著名的铜板画Melencolia上的4×4幻方,有趣的是,他连创造年代(1514)也镶在这个方阵中,而且上下左右,四个小方阵的和皆为34,是欧洲最古老的幻方。
幻方简史
《系辞》云:“河出图,洛出书,圣人则之。”在宋朝之前,洛书的记述只有文字。
九宫图实物最早发现于西汉,1977年中国考古学家在安徽阜阳县双古堆西汉古墓中发现汉文帝七年(前173年)的太乙九宫占盘,乃是中国汉代幻方的实物。东汉《
数术记遗》也有记载。
后来
陈抟以降认为
河图洛书的洛书代表九宫图,为 这9个数,而3行、3列以及两对角线上各自的数之和均为15。
杨辉纵横图
南宋数学家杨辉著《续古摘奇算法》把类似于九宫图的图形命名为纵横图,书中列举3、4、5、6、7、8、9、10阶幻方。其中所述三阶幻方构造法:“九子斜排,上下对易,左右相更,四维挺出,戴九履一,左三右七,二四为肩,六八为足”,比法国数学家Claude Gaspar Bachet提出的方法早三百余年。
构造法
根据构造方法的不同,幻方可以分成三类:奇数阶幻方、4M阶幻方和4M+2阶幻方,其中M为
自然数,2阶幻方不存在。幻方构造法主要有:
连续摆数法、
阶梯法(楼梯法)、奇偶数分开的菱形法、对称法、对角线法、比例放大法、斯特雷奇法、LUX法、拉伊尔法(基方、根方合成法)、镶边法、相乘法、幻方模式等。
偶数阶魔方阵
(1) 先将整个方阵划分成k*k个4阶方阵,然后在每个4阶方阵的对角线上做记号;
(2) 由左而右、由上而下,遇到没有记号的位置才填数字,但不管是否填入数字,每移动一格数字都要加1;
(3) 自右下角开始,由右而左、由下而上,遇到没有数字的位置就填入数字,但每移动一格数字都要加1。
填制魔方阵时,先将整个方阵划成田字型的四个2 k + 1阶的奇数阶小方阵,并以下法做
注记:
(1)右半两个小方阵中大于k+2的列;
(2)左半两个小方阵中( k + 1 , k + 1 )的格位;
(3)左半两个小方阵中除了( k+1 , 1 )是指第一列第k+1行的格位之外,小于k +1的列。
以奇数阶魔方阵的方法连续填制法依左上、右下、右上、左下的顺序分别填制这四个小方阵。将上半及下半方阵中有注记的数字对调,魔方阵完成。
排列方法
魔方阵的排列规律如下:
⑴将1放在第一行中间一列;
⑵从2开始直到n×n止各数依次按下列规则存放;每一个数存放的行比前一个数的行数减1,列数加1(例如上面的三阶魔方阵,5在4的上一行后一列);
⑶如果上一个数的行数为1,则下一个数的行数为n(指最下一行);例如1在第一行,则2应放在最下一行,列数同样加1;
⑷当上一个数的列数为n时,下一个数的列数应为1,行数减去1。例如2在第3行最后一列,则3应放在第二行第一列;
⑸如果按上面规则确定的位置上已有数,或上一个数是第一行第n列时,则把下一个数放在上一个数的下面。例如按上面的规定,4应该放在第1行第2列,但该位置已经被占据,所以4就放在3的下面。