高精度计算
超出标准数据类型能表示的范围的数据运算
高精度运算,是指参与运算的数(加数,减数,因子……)范围大大超出了标准数据类型(整型,实型)能表示的范围的运算。例如,求两个20000位的数的和。这时,就要用到高精度算法了。
定义
高精度加法
高精度运算主要解决以下三个问题:
一、加数减数、运算结果的输入和存储
运算因子超出了整型、实型能表示的范围,肯定不能直接用一个数的形式来表示。在Pascal中,能表示多个数的数据类型有两种:数组和字符串。
数组:每个数组元素存储1位(在优化时,这里是一个重点!),有多少位就需要多少个数组元素;用数组表示数的优点:每一位都是数的形式,可以直接加减;运算时非常方便。用数组表示数的缺点:数组不能直接输入;输入时每两位数之间必须有分隔符,不符合数值的输入习惯;
字符串:String型字符串的最大长度是255,可以表示255位。Ansistring型字符串长度不受限制。用字符串表示数的优点:能直接输入输出,输入时,每两位数之间不必分隔符,符合数值的输入习惯;用字符串表示数的缺点:字符串中的每一位是一个字符,不能直接进行运算,必须先将它转化为数值再进行运算;运算时非常不方便;
综合以上所述,对上面两种数据结构取长补短:用字符串读入数据,用数组存储数据:
var st:string;
x,y:array[0..255]of integer;{定义两个数组,X和Y,用来储存数}
i,j,l1,l2:integer;
begin
readln(st);
l1:=length(st);{------length(x),该函数是获取字符串X的长度,返回为整型}
for i:=0 to 255 do x[i]:=0;{数组初始化,该句等价于‘fillchar(x,sizeof(x),o);’,即给一数组整体赋值,但运行速度快于用‘for’语句对数组中的每一个数赋值}
for i:=l1 downto 1 do
x[l1-i+1]:=ord(st[i])-ord('0');{------这里是重点,把字符串转换为数值,储存在数组中}
readln(st);
l2:=length(st);{------length(x),该函数是获取字符串X的长度,返回为整型}
for i:=0 to 255 do y[i]:=0;{数组初始化,该句等价于‘fillchar(y,sizeof(y),o);’}
for i:=l2 downto 1 do
y[l2-i+1]:=ord(st[i])-ord('0');{------这里是重点,把字符串转换为数值,储存在数组中}
对字符串转为数值原理补充:ord(x)-48,如果X='1',因为'1'的ASCLL码是49,所以减去48就等于1,间接地把字符转换为数值了,各位初手要好好体会.
二、运算过程
在往下看之前,大家先列竖式计算35+86。
注意的问题:
(1)运算顺序:两个数靠右对齐;从低位向高位运算;先计算低位再计算高位;
(2)运算规则:同一位的两个数相加再加上从低位来的进位,成为该位的和;这个和去掉向高位的进位就成为该位的值;如上例:3+8+1=12,向前一位进1,本位的值是2;可借助MOD、DIV运算完成这一步;
(3)最后一位的进位:如果完成两个数的相加后,进位位值不为0,则应添加一位;
(4)如果两个加数位数不一样多,则按位数多的一个进行计算;
if l1<l2 then l1:=l2;
for i:=1 to l1 do
begin
x[i]:=x[i]+y[i];
x[i+1]:=x[i+1]+x[i] div 10;
x[i]:=x[i] mod 10;
end;
三、结果的输出(这也是优化的一个重点)
按运算结果的实际位数输出
var st:string;
x,y:array[0..255]of integer;
i,j,l1,l2:integer;
begin
readln(st);
l1:=length(st);
for i:=0 to 255 do x[i]:=0;
for i:=l1 downto 1 do
x[l1-i+1]:=ord(st[i])-ord('0');
readln(st);
l2:=length(st);
for i:=0 to 255 do y[i]:=0;
for i:=l2 downto 1 do
y[l2-i+1]:=ord(st[i])-ord('0');
if l1<l2 then l1:=l2;
for i:=1 to l1 do
begin
x[i]:=x[i]+y[i];
x[i+1]:=x[i+1]+x[i] div 10;
x[i]:=x[i] mod 10;
end;
write('x+y=');
j:=255;
while x[j]=0 do j:=j-1;
for i:=j downto 1 do write(x[i]);
readln;
end.
四、优化:
以上的方法的有明显的缺点:
(1)浪费空间:一个整型变量(-32768~32767)只存放一位(0~9);
(2)浪费时间:一次加减只处理一位;
针对以上问题,我们做如下优化:一个数组元素存放四位数;(integer的最大范围是32767,5位的话可能导致出界)将标准数组改为紧缩数组。第一步的具体方法:
l:=length(s1);
k1:=260;
repeat {————有关字符串的知识}
s:=copy(s1,l-3,4);
val(s,a[k1],code);
k1:=k1-1;
s1:=copy(s1,1,l-4);
l:=l-4;
until l<=0;
k1:=k1+1;
而因为这个改进,算法要相应改变:
(1)运算时:不再逢十进位,而是逢万进位(mod 10000; div 10000);
(2)输出时:最高位直接输出,其余各位,要判断是否足够4位,不足部分要补0;例如:1,23,2345这样三段的数,输出时,应该是100232345而不是1232345。
改进后的算法:
var a,b:string; k,i,c,d:longint; e,z,y:array[0..255]of integer;
begin
readln(a);
readln(b);
if length(b)>length(a) then for i:=1 to length(b)-length(a) do
a:='0'+a
else for i:=1 to length(a)-length(b) do
b:='0'+b;
for i:=length(a) downto 1 do
begin
c:=ord(a[i])-48;
d:=ord(b[i])-48;
if c+d<10 then e[i]:=e[i]+c+d else begin e[i]:=e[i]+c+d-10;e[i-1]:=1; end;
end;
if e[0]=1 then k:=0 else k:=1;
for i:=k to length(a) do
write(e[i]);
end.
C++参考程序:
#include
#include
#include
using namespace std;
int main()
{
char a1[100],b1[100];
int a[100],b[100],c[100],lena,lenb,lenc,i,x;
memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); memset(c,0,sizeof(c)); gets(a1); gets(b1); //输入加数与被加数 lena=strlen(a1); lenb=strlen(b1); for (i=0;i<=lena-1;i++) a[lena-i]=a1[i]-48; //加数放入a数组   for (i=0;i<=lenb-1;i++) b[lenb-i]=b1[i]-48; //加数放入b数组 lenc =1; x=0; while (lenc <=lena||lenc <=lenb) {   c[lenc]=a[lenc]+b[lenc]+x; //两数相加   x=c[lenc]/10;   c[lenc]%=10; lenc++; } c[lenc]=x; if (c[lenc]==0) lenc--; //处理最高进位 for (i=lenc;i>=1;i--) cout<
return 0; }
高精度减法
高精度加法相比,减法在差为负数时处理的细节更多一点:当被减数小于减数时,差为负数,差的绝对值是减数减去被减数;在程序实现上用一个变量来存储符号位,用另一个数组存差的绝对值。
算法流程:(1).读入被减数S1,S2(字符串);
(2).置符号位:判断被减数是否大于减数:大则将符号位置为空;小则将符号位置为“- ”,交换减数与被减数;
(3).被减数与减数处理成数值,放在数组中;
(4).运算:A、取数;
B、判断是否需要借位
C、减,将运算结果放到差数组相应位中;
D、判断是否运算完成:是,转5;不是,转A;
(5).打印结果:符号位,第1位,循环处理第2到最后一位;
细节:▲如何判断被减数与减数的大小?
如果位数一样,直接比较字符串大小;否则,位数多的大。
k1:=length(s1); k2:=length(s2);
if k1=k2 then
if s1
else if k1
▲将字符串处理成数值:
l:=length(s1);{求出s1的长度,也即s1的位数;有关字符串的知识。}
k1:=260;
for i:=l downto 1 do
begin
a[k1]:=ord(s1[i])-48;{将字符转成数值}
k1:=k1-1;
end;
k1:=k1+1;
▲运算(减法跟加法比较,减法退位处理跟加法进位处理不一样):
处理退位: 跟加法一样,在for语句外面先将退位清零,用被减数再减去退位,{注意:由于每一个数位不一定都得向前一位借位,所以这里退位得清零。例如,234-25,个位需借位,而十位不用} 接着,再判断,当被减数某一位不够减时,则需加上前一位退位过来的数。注意:由于这里采用优化方法,所以退一位,就等于后一位加上10000。)最后,再拿一个数组来存储两个减数的差。
jw:=0;
for i:=260 downto k1 do
begin
a[i]:=a[i]-jw;{此处jw为从刚处理的那一位上从本一位上的借位}
jw:=0; {此处jw为I 位准备向高一位的借位}
if a[i]
begin
jw:=1;
a[i]:=a[i]+10000;
end;
c[i]:=a[i]-b[i]
end;
▲打印结果: 先找到差的第一个非零数,如果差的所有位数都为零,就直接输出零; 如果不是,就输出符号位和差的第一位。剩下部分,打印补足零;因为优化后的高精度减法
while (c[k]=0) and (k<=260) do k:=k+1;
if k>260 then write('0')
else begin
write(fh,c[k]);{k是差的第1位;}
for i:=k+1 to 260 do
begin
if c[i]<100 then write('0');
if c[i]<10 then write('0');
write(c[i]);
end;
end;
参考程序:
program ZDloveQC;
var s1,s2,s3,s4,s:string;
a,b,c:array[1..260]of integer;
i,k1,k2,l,code,jw:longint;
fh:string;
begin
readln(s1); readln(s2);
k1:=length(s1); k2:=length(s2); fh:='';
if k1=k2 then
if s1
if k1
k1:=260;
l:=length(s1);
repeat
s3:=copy(s1,l-3,4);
val(s3,a[k1],code);
dec(k1);
s1:=copy(s1,1,l-4);
l:=l-4;
until l<=0;
inc(k1);
l:=length(s2);
k2:=260;
repeat
s4:=copy(s2,l-3,4);
val(s4,b[k2],code);
dec(k2);
s2:=copy(s2,1,l-4);
l:=l-4;
until l<=0;
inc(k2);
jw:=0;
for i:=260 downto k1 do
begin
a[i]:=a[i]-jw;
jw:=0;
if a[i]
begin
jw:=1;
a[i]:=a[i]+10000;
end;
c[i]:=a[i]-b[i];
end;
while (c[k1]=0)and(k1<260) do inc(k1);
if k1>260 then writeln('0')
else begin
write(fh,c[k1]);
for i:=k1+1 to 260 do
begin
if c[i]<1000 then write('0');
if c[i]<100 then write('0');
if c[i]<10 then write('0');
write(c[i]);
end;
end;
end.
C++参考程序:
#include
#include
#include
#include
#include
int const n=1000;
typedef int arr[n];
单精度乘法
单精度乘法是计算范围次于高精度乘法的一种运算,只是运算效率比高精度计算略高。
单精度乘法过程样例:
const
maxcount=进制位
maxlen=记录高精度数组大小
procedure mulnum(a:bignum;x:longint;,var c:bignum);
var
i:longint;
begin
fillchar(c,sizeof(c),0);c[0]:=a[0];
for i:=1 to c[0] do c[i]:=a[i]*x;
for i:=1 to c[0] do {进位}
begin
inc(c[i+1],c[i] div maxcount);
c[i]:=c[i] mod 10;
end;
while c[c[0]+1]>0 do
begin
inc(c[0]);
inc(c[c[0]+1],c[c[0]] div maxcount);
c[c[0]]:=c[c[0]] mod maxcount;
end;
end;
高精度乘法
高精度乘法基本思想和加法一样。其基本流程如下:
①读入被乘数s1,乘数s2
②把s1、s2分成4位一段,转成数值存在数组a,b中;记下a,b的长度k1,k2;
③i赋为b中的最低位;
④从b中取出第i位与a相乘,累加到另一数组c中;(注意:累加时错开的位数应是多少位?)
⑤i:=i-1;检测i值:小于k2则转⑥,否则转④
⑥打印结果
参考程序:
program chengfa;
const n=100;
type ar=array [1..n] of integer;
var a,b:ar; k1,k2,k:integer;
c:array [1..200] of integer;
s1,s2:string;
procedure fenge(s:string;var d:ar; var kk:integer); {将s分割成四位一组存放在d中,返回的kk值指向d的最高位}
var ss:string;
i,code:integer;
begin
i:=length(s);
kk:=n;
repeat
ss:=copy(s,i-3,4);
val(ss,d[kk],code);
kk:=kk-1;
s:=copy(s,1,i-4);
i:=i-4;
until i<0;
kk:=kk+1;
end;
procedure init;
var i:integer;
begin
for i:=1 to n do begin a:=0; b:=0; end;
for i:=1 to 2*n do c:=0;
write('input 2 numbers:');
readln(s1);
readln(s2);
fenge(s1,a,k1);
fenge(s2,b,k2);
end;
procedure jisuan;
var i,j,m:integer; x,y,z,jw:longint;
begin
i:=n; k:=2*n;
repeat
x:=b; z:=0; m:=k; jw:=0;
for j:=n downto k1 do
begin
y:=a[j];
z:=c[m];
x:=x*y+z+jw;
jw:=x div 10000;
c[m]:=x mod 10000;
m:=m-1;
x:=b;
end;
if jw<>0 then c[m]:=jw else m:=m+1;
i:=i-1;
k:=k-1;
until i
k:=m;
end;
procedure daying;
var i:integer;
begin
write(c[k]);
for i:=k+1 to 2*n do
begin
if c<1000 then write('0');
if c<100 then write('0');
if c<10 then write('0');
write(c);
end;
writeln;
end;
begin
init;
jisuan;
daying;
end.
教材“基础编”P87高精乘法参考程序:
program ex3_1;
var
a,b,c:array[0..1000] of word;
procedure init;
var
s:string;
ok,i,j:integer;
begin
readln(s);
a[0]:=length(s);
for i:=1 to a[0] do
val(s[a[0]-i+1],a,ok);
readln(s);
b[0]:=length(s);
b[0]:=length(s);
for i:=1 to b[0] do
val(s[b[0]-i+1],b,ok);
end;
procedure highmul;
var i,j,k:integer;
begin
c[0]:=a[0]+b[0];
for i:=1 to b[0] do
for j:=1 to a[0]+1 do
begin
inc(c[i+j-1],a[j]*b mod 10);
c[i+j]:=c[i+j]+(a[j]*b div 10)+(c[i+j-1] div 10);
c[i+j-1]:=c[i+j-1] mod 10;
end;
end;
procedure print;
var i:integer;
begin
while c[c[0]]=0 do dec(c[0]);
for i:=c[0] downto 1 do
write(c);
end;
begin
init;
highmul;
print;
end.
C++参考程序:
#include #include #include using namespace std; int main() { char a1[100],b1[100]; int a[100],b[100],c[100],lena,lenb,lenc,i,j,x; memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); memset(c,0,sizeof(c)); gets(a1);gets(b1); lena=strlen(a1);lenb=strlen(b1); for (i=0;i<=lena-1;i++) a[lena-i]=a1[i]-48; for (i=0;i<=lenb-1;i++) b[lenb-i]=b1[i]-48; for (i=1;i<=lena;i++) { x=0;//用于存放进位 for (j=1;j<=lenb;j++) //对乘数的每一位进行处理 { c[i+j-1]=a[i]*b[j]+x+c[i+j-1]; //当前乘积+上次乘积进位+原数x=c[i+j-1]/10; c[i+j-1] %= 10; } c[i+lenb]=x;//进位 } lenc=lena+lenb; while (c[lenc]==0&&lenc>1) //删除前导0 lenc--; for (i=lenc;i>=1;i--) cout<
高精度除法
高精度除法
1).高精度除以整型数据(integer);
程序如下:
program HighPrecision3_Multiply1;
const
fn_inp='hp5.inp';
fn_out='hp5.out';
maxlen=100; { max length of the number }
type
hp=record
len:integer; { length of the number }
s:array[1..maxlen] of integer
{ s[1] is the lowest position
s[len] is the highest position }
end;
var
x,y:hp;
z,w:integer;
procedure PrintHP(const p:hp);
var i:integer;
begin
for i:=p.len downto 1 do write(p.s[i]);
end;
procedure init;
var
st:string;
i:integer;
begin
assign(input,fn_inp);
reset(input);
readln(st);
x.len:=length(st);
for i:=1 to x.len do { change string to HP }
x.s:=ord(st[x.len+1-i])-ord('0');
readln(z);
close(input);
end;
procedure Divide(a:hp;b:integer;var c:hp;var d:integer);
{ c:=a div b ; d:=a mod b }
var i,len:integer;
begin
fillchar(c,sizeof(c),0);
len:=a.len;
d:=0;
for i:=len downto 1 do { from high to low }
begin
d:=d*10+a.s[i];
c.s:=d div b;
d:=d mod b;
end;
while(len>1) and (c.s[len]=0) do dec(len);
c.len:=len;
end;
procedure main;
begin
Divide(x,z,y,w);
end;
procedure out_;
begin
assign(output,fn_out);
rewrite(output);
PrintHP(y);
writeln(w);
close(output);
end;
begin
init;
main;
out_;
end.
2).高精度除以高精度
程序如下:
版本一:
版本二:
高精度阶乘
作为一种高精度乘法的扩展算法,实质为高精度乘低精度,算法如下: var
a:array[1..10000] of longint;
i,j,k,l,p,o,q,x,y,w:integer;
begin
read(i);
a[1]:=1;
w:=1;
for j:=1 to i do
begin
y:=0; //到“For”前可省,但改为for k:=1 to 10000 do
x:=j;
while x>0 do
begin
y:=y+1;
x:=x div 10;
end;
o:=0;
for k:=w to l+y+1 do
begin
q:=a[k]*j+o;
o:=q div 10;
a[k]:=q mod 10;
end;
l:=10000;
while (a[l]=0) and (l>1) do l:=l-1;
w:=1;
while (a[w]=0) and (w<9999) do w:=w+1;
end;
for p:=l downto 1 do
write(a[p]);
writeln;
end.
C++实现
我们知道,C++是一个面向对象的语言。上述所有代码的实现都是面向过程的,都是以高精度运算为主体进行编程。然而,在实际应用中,高精度通常只作为程序的一部分而出现,在这样的情况下,上述代码难以直接移植、使用的特性暴露无遗。我们用C++的面向对象编程特性来做一次非常好用的高精度。
实现
我们使用标准库vector做基类,完美解决位数问题,同时更易于实现。
高精度类型Wint包含一个低精度转高精度的初始化函数,可以自动被编译器调用,因此无需单独写高精度数和低精度数的运算函数,十分方便;还包含了一个在各类运算中经常用到的进位小函数。
输入输出
平淡无奇,有很多读入的方法。这里偷个懒,直接读入一个字符串再转入Wint中。
大小比较
比较,只需要写两个,其他的直接代入即可。值得注意的是,这里用常量引用当参数,避免拷贝更高效。
加法
加法,先实现+=,这样更简洁高效。注意各个参数有别。
减法
减法,返回差的绝对值,由于后面有交换,故参数不用引用。
乘法
乘法不能先实现*=,原因自己想。
除法和取模
除法和取模先实现一个带余除法函数。当然,高精度除法也可以用二分法实现,不过效率过低且代码冗长,这里使用常规竖式除法。
使用
通过重载运算符,还可以实现++、--、^、!、逻辑运算符等很多运算,十分简单,此处都不写了。
此时你几乎可以像int一般便捷地使用Wint,甚至可以把Wint和int混合使用。
顺手实现一个快速幂,可以看到和普通快速幂几乎无异。
优化与改进
上述高精度代码已经能满足正常使用需求了,不过仍然有优化和改进的空间:
一、万进制优化
用int保存个位数显然太过浪费,short型运算效率又没有int型高(绝大部分机器对int有特别优化),在这样的情况下,我们将改进后的Wint每位保存十进制下的四位(首位可能有前导0)即万进制。在这样的优化下,空间占用四分之一,加法快4倍,乘法16倍,而除法可达64倍之多。当然,这仍属于常数级优化,不过底层运算十分频繁的情况下还是值得考虑的。上述代码无需作出太大调整,只需输入输出、进位、减法除法等函数略加改进即可,代码略。
二、低精度优化
前面说过,高精度和低精度的运算会先将低精度提升到高精度再进行运算,这就有了优化空间。注意,这里的优化低精度是基于Wint是由int组成这一特点进行的,大于int型的别的类型(如long long)仍需提升到Wint再运算。考虑到低精度数位数在十位以内,优化后效率提升其实不到十倍。不过,在高精度和低精度混合运算十分频繁的情况下,专门写优化的高精度和低精度的运算也聊胜于无。这里先给出加法的优化示例。
三、初始化函数改进:
注意到初始化函数Wint(int n)会将大于int表示范围的类型数如(unsigned long long)先转为低精度再初始化,我们再增加(或者直接替换原先的)初始化函数,改为:
此外,在代码中如果想定义到一个高精度常量(20位向上),就必须增加一个字符串初始化函数而不能直接赋一个整型常数(想想为什么?)。但是,这个字符串初始化函数我们希望它不会像int型一样在运算中自动提升至Wint。否则,像s+7这样的表达式就会有意义(先将s隐形转换至Wint再进行加法运算,返回一个Wint型结果),但通常不符合我们的预期而仅仅只是代码错误,而编译时无法找出,会给我们调试代码带来很大麻烦。所以,这个字符串初始化函数前需加关键字explicit,来指出我们不希望隐式转换的发生。
参考资料
最新修订时间:2024-08-17 09:33
目录
概述
定义
参考资料