金属间化合物,是指金属与金属或金属与类金属 (如 H、B、N、S、P、C、Si等)形成的化合物。
发展简史
自从有冶金技术以来,就已经制备了金属间化合物。Westbrook 在1976-1993年间曾相当详细地叙述了金属间化合物的发展史。他提到,人们是从使用
低熔点合金系发展到使用某些金属间化合物的。金属间化合物的应用则是由于金属间化合物具有高的硬度,良好的耐磨性,同时还具有金属性,并可以抛光,因而作为
装饰材料而具有广泛的应用。例如,古埃及使用的青铜涂层和中国使用的青铜镜等。到20世纪初,金属间化合物的应用主要是作为功能材料,首先是由于某些相具有特殊的磁性而实现其工业应用,随后才发展到形状记忆材料和超导材料的实际应用。热电转换功能材料MoSi2不是一种典型的金属间化合物,而是一种由金属间化合物到金属与非金属化合物(硅不是金属而是半导体)的一个标志。尽管如此,按惯例仍将硅化合物列入金属间化合物类。因为其与金属有许多相似之处。还有一类主要的化合物是由第ⅢA族和ⅤA族元素形成的化合物,如InSb、GeAs、InAs等,这些相的组成元素有金属、半金属和非金属,形成的化合物是半导体,不属于具有金属特性的金属间化合物。
由于金属间化合物的高脆性高硬度等特性,到20世纪50-70年代才成功地研究并开发了金属间化合物在结构材料领域的应用(汞齐作为牙科材料是个例外),典型的例子是TizAl、NigAl的开发和应用。
金属间化合物(中间相)是许多工业合金中重要的组成相。到目前为止,金属间化合物应用最广、品种最多的仍是在光、电、磁声、热和功能转换等方面具有特性的功能材料领域。
术语介绍
两种金属的原子按一定比例化合,形成与原来两者的晶格均不同的合金组成物。
金属间化合物与普通化合物不同,其组成可在一定范围内变化,组成元素的化合价很难确定,但具有显著的金属结合键。
其化学成分通常符合AmBn形式,在金属功能材料中,有结构材料,如Ni3Ti、Ni3A1、NiAl、Fe3Al、FeAl、Ti3Al和TiAl等可用作高温结构材料;磁性材料YCo5、 PcOsNd2Fe14B,形状记忆合金NiT,半导体材料GaAs、InP,超导材料 Nb3Sn、V3Ga,
储氢材料Lanis、FeTi、Mg2Ni等。
主要特点
这类化合物虽然也可以用一个 “分子式”表示,但它和普通的化合物相比,具有若干不同的特点:
①大部分金属间化合物不符合原子价规则。例如,Cu-Zn合金系中有三种金属间化合物CuZn、Cu5Zn8和CuZn3。显然,这三种化合物都不符合化合价的规则。
②大部分金属间化合物的成分并不确定,也就是说,化合物中各组元原 子的比并非确定值,而是或多或少可以在一定范围内变化。例如,CuZn化合物中Cu和Zn原子之比(Cu/Zn)可 以在36%-55%的范围内变化。
③原 子间的结合键往往不是单一类型的键,而是混合键,即离子键、共价键、金属键、乃至分子键(范德瓦斯力)并存。但不同的化合物占主导地位的键也不同。
④由于存在离子键或
共价键, 故金属间化合物往往硬而脆(强度高,塑性差)。但又因存在金属键的成分, 也或多或少具有金属特性(如有一定的塑性、导电性和金属光泽等)。
⑤金属间化合物的结构是由原子价、电子浓度、原子(或离子)半径等多个因素决定的。
制备方法
机械合金化
机械合金化(Mechanical Alloying,MA)是J.S. Banjamin提出的一种制备合金粉末的高能球磨技术,通常为干式球磨。磨球和粉末间的相互碰撞引起塑性粉末的压扁和加工硬化,导致粒子重叠,表面接触。发生冷焊。形成由各组分组成的多层
复合粉末粒子,同时加工硬化层及复合粒子发生断裂。冷焊与断裂不断重复。以及充分揉混,使得粉末细化且更加均匀,最后形成预制复合颗粒。由于复合颗粒内有大量的缺陷和纳米微结构。进一步高能球磨时发生固态反应,形成新材料。
自蔓延高温合成
A.G.Merzhanov等发现了自蔓延高温合成(Self-propagatingHigh-temperature Synthesis,SHS)现象。它是利用化学反应产生的反应热自加热和自传导作用合成材料的一种技术。点燃的粉末压坯产生化学反应,其生成热使邻近的粉末温度骤然升高,引发化学反应,并以燃烧波的形式蔓延,通过整个反应物。燃烧波推行前移,反应物转变成产物。通常反应以氩气或氮气为保护气氛。
放电等离子烧结
放电等离子烧结(Soark Plasma Sintering,SPS)是利用脉冲大电流直接施加于模具和样品,从而产生体加热,使被烧结样品快速升温,同时脉冲电流引起颗粒间的放电效应,使颗粒局部表面产生高温而熔化,表面物质剥落,净化了颗粒表面,实现快速烧结。有效地抑制了颗粒长大。
定向凝固技术
定向凝固是指在凝固过程采用强制手段,在凝固金属和未凝固熔体之间建立起沿特定方向的温度梯度,从而使熔体形核后,沿着与热流相反的方向,按要求的结晶取向进行凝固。定向凝固技术能较好地控制凝固组织的晶粒取向,消除横向晶界,获得柱晶或单晶组织,提高材料的纵向力学性能。
热压法和热等静压法
热压法(Hot Pressing,HP)和热等静压法(Hot Isostatic Pressing,HIP)是粉末压制和烧结同时进行的工艺。两者的基本原理相同,主要区别在于加压方式的不同。热压法是单向或双向加力,而
热等静压法是在试样各个方向都施加等同的压力,故能有效消除制品的残留孔隙,得到接近完全致密的材料,特别适用于一些不宜压制和烧结的难熔金属间化合物。
发展现状
纵观国内外金属间化合物结构材料领域研究的成果,其表征主要有一方面:
新型材料的发展方面,和有序金属间化合物物理金属学理论方面。
13年来,我国金属间化合物结构材料研究取得了很大的成绩,在几个重点材料研究领域可以说达到与国外同步的水平,培养了一批高级研究人才,但金属间化合物理论研究方面的建树不太突出。
应用介绍
金属间化合物具有与原金属不同的结晶结构和原子结构,能形成新的有序超点阵结构,具有许多与众不同的性质,而有别于目前广泛应用的金属或合金。在近几十年里得到了快速发展,应用领域也在逐渐扩大。
(1)高温应用
金属间化合物由于具有优于高温合金的
耐热性、高的比强度、高的比寿命、高的导热性和高的抗氧化性,以及具有优于陶瓷材料的韧性和良好的热加工性而受到广泛关注,尤其受到航空部门的青睐。
(2)电磁应用
金属间化合物作为
电磁材料是功能材料的一个分支,广泛应用于能源、通讯等领域。制成的磁性元器件具有多种功能,如转换、传递、处理信息和存储能量等。
(3)超导材料
限制
超导材料广泛应用的主要问题是超导转变温度太低,附加的冷却设备复杂。
(4)其他应用