网络流理论
网络流理论
网络流理论(network-flows)是一种类比水流的解决问题方法,与线性规划密切相关。网络流的理论和应用在不断发展,出现了具有增益的流、多终端流、多商品流以及网络流的分解与合成等新课题。网络流的应用已遍及通讯、运输、电力、工程规划、任务分派、设备更新以及计算机辅助设计等众多领域。
理论研究
图论中的一种理论与方法,研究网络上的一类最优化问题。1955年,T.E.哈里斯在研究铁路最大通量时首先提出在一个给定的网络上寻求两点间最大运输量的问题。1956年,L.R.福特和D.R.富尔克森等人给出了解决这类问题的算法,从而建立了网络流理论。在一个公路网中,顶点v1…v6表示6座城镇,每条边上的权数表示两城镇间的公路长度。要问:若从起点v1将物资运送到终点v6去,应选择那条路线才能使总运输距离最短?这样一类问题称为最短路问题。如果在一个输油管道网中,v1表示发送点,v6表示接收点,其他点表示中转站,各边的权数表示该段管道的最大输送量。要问怎样安排输油线路才能使从v1到v6的总运输量为最大?这样的问题称为最大流问题
理论创建
最大流理论是由福特和富尔克森于1956年创立的,他们指出最大流的流值等于最小割(截集)的容量这个重要的事实,并根据这一原理设计了用标号法求最大流的方法,后来又有人加以改进,使得求解最大流的方法更加丰富和完善。最大流问题的研究密切了图论和运筹学,特别是与线性规划的联系,开辟了图论应用的新途径。
最大流问题仅注意网络流的流通能力,没有考虑流通的费用。实际上费用因素是很重要的。例如在交通运输问题中,往往要求在完成运输任务的前提下,寻求一个使总运输费用最省的运输方案,这就是最小费用流问题。如果只考虑单位货物的运输费用,那么这个问题就变成最短路问题。由此可见,最短路问题是最小费用流问题的基础。现已有一系列求最短路的成功方法。最小费用流(或最小费用最大流)问题,可以交替使用求解最大流和最短路两种方法,通过迭代得到解决。网络最大流问题和它的对偶问题——最小截问题,是一对经典组合优化问题,它们在许多工程领域和科学领域有重要的应用,是计算机科学和运筹学重要的内容,最大流问题已经有40多年的研究历史,近年来,随着各种网络的飞速发展,最大流问题的研究也取得了很大的进展,对最大流问题研究做了详细的总结,并对下一步研究趋势进行了预测。
发展历程
网络流的理论和应用在不断发展,出现了具有增益的流、多终端流、多商品流以及网络流的分解与合成等新课题。网络流的应用已遍及通讯、运输、电力、工程规划、任务分派、设备更新以及计算机辅助设计等众多领域。
常用算法
1、augment path,直译为“增广路径”,其思想大致如下:
原有网络为G,设有一辅助图G',其定义为V(G') = V(G),E(G')初始值(也就是容量)与E(G)相同。每次操作时从Source点搜索出一条到Sink点的路径,然后将该路径上所有的容量减去该路径上容量的最小值,然后对路径上每一条边添加或扩大反方向的容量,大小就是刚才减去的容量。一直到没有路为止。此时辅助图上的正向流就是最大流。
我们很容易觉得这个算法会陷入死循环,但事实上不是这样的。我们只需要注意到每次网络中由Source到Sink的流都增加了,若容量都是整数,则这个算法必然会结束。
寻找通路的时候可以用DFSBFS最短路等算法。就这两者来说,BFS要比DFS快得多,但是编码量也会相应上一个数量级。
增广路方法可以解决最大流问题,然而它有一个不可避免的缺陷,就是在极端情况下每次只能将流扩大1(假设容量、流为整数),这样会造成性能上的很大问题,解决这个问题有一个复杂得多的算法,就是预推进算法。
2、push label,直译为“预推进”算法。
3、压入与重标记(Push-Relabel)算法
除了用各种方法在剩余网络中不断找增广路(augmenting)的Ford-Fulkerson系的算法外,还有一种求最大流的算法被称为压入与重标记(Push-Relabel)算法。它的基本操作有:压入,作用于一条边,将边的始点的预流尽可能多的压向终点;重标记,作用于一个点,将它的高度(也就是label)设为所有邻接点的高度的最小值加一。Push-Relabel系的算法普遍要比Ford-Fulkerson系的算法快,但是缺点是相对难以理解。
Relabel-to-Front使用一个链表保存溢出顶点,用Discharge操作不断使溢出顶点不再溢出。Discharge的操作过程是:若找不到可被压入的临边,则重标记,否则对临边压入,直至点不再溢出。算法的主过程是:首先将源点出发的所有边充满,然后将除源和汇外的所有顶点保存在一个链表里,从链表头开始进行Discharge,如果完成后顶点的高度有所增加,则将这个顶点置于链表的头部,对下一个顶点开始Discharge。
Relabel-to-Front算法的时间复杂度是O(V^3),还有一个叫Highest Label Preflow Push的算法复杂度据说是O(V^2*E^0.5)。我研究了一下HLPP,感觉它和Relabel-to-Front本质上没有区别,因为Relabel-to-Front每次前移的都是高度最高的顶点,所以也相当于每次选择最高的标号进行更新。还有一个感觉也会很好实现的算法是使用队列维护溢出顶点,每次对pop出来的顶点discharge,出现了新的溢出顶点时入队。
Push-Relabel类的算法有一个名为gap heuristic的优化,就是当存在一个整数0k的顶点v做更新,若它小于V+1就置为V+1。
应用
网络流模型在OI(信息学竞赛)中也有重要的应用,许多高端的竞赛如APIO,CTSC,都非常重视选手在网络流上的建模技巧。上述所说的最大流、最小割、最小费用最大流、最小费用流、二分图匹配、有上下界的可行流等算法都对应着一些模型,其中刘汝佳(曾经IOI国家队队员)在他的白书训练指南中第五章里详细的介绍了上述算法各种应用,同时也有各种习题提供建模技巧,其中有一些如拆点,加边的技巧。但总体网络流在信息学竞赛中不重视选手的算法实现,更看重选手的数学建模能力。
参考资料
最新修订时间:2022-08-25 16:46
目录
概述
理论研究
理论创建
参考资料