《矩阵计算》是2014年人民邮电出版社出版的图书,作者是戈卢布、范洛恩。
简介
《矩阵计算》是现代矩阵计算奠基人Gene H. Golub名著,是国际上关于数值线性代数方面权威、全面的一本专著,被
美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院研究生院等众多世界知名学府用作相关课程教材或主要参考书。
《矩阵计算》是数值计算领域的名著,系统介绍了矩阵计算的基本理论和方法。内容包括:矩阵乘法、矩阵分析、
线性方程组、正交化和最小二乘法、特征值问题、Lanczos 方法、矩阵函数及专题讨论等。书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献。新版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。《矩阵计算(英文版·第4版)》可作为高等院校数学系高年级本科生和研究生教材,亦可作为计算数学和工程技术人员参考书。 书中系统介绍了矩阵计算的基本理论和方法,提及的许多算法都有现成的软件包实现。每节后附有习题,并给出了大量注释和参考文献,有助于读者自学和巩固正文内容。
作者简介
Gene H.Golub(戈卢布),(1932-2007),美国科学院、工程院和艺术科学院院士,世界著名的数分析专家,现代矩阵计算的奠基人,矩阵分解算法的主要贡献者。生前曾任
斯坦福大学教授。他与William Kahan在1970年给出了奇异值分解(SingularValue Decomposition,SVD)的可行算法,一直沿用至今。他发起组织了工业与应用数学国际会议(Intemational Congress on Industrial and Applied Mathematics,ICIAM)。
Charles F. Van Loan(范洛恩),著名数值分析专家,美国康奈尔大学教授,曾任该校计算机科学系主任。他于1973年在密歇根大学获得博士学位,师从Cleve Moler。
图书目录
1 Matrix Multiplication Problems
1.1 Basic Algorithms and Notation
1.2 Exploiting Structure
1.3 Block Matrices and Algorithms
1.4 Vectorization and Re-Use Issues
2 Matrix Analysis
2.1 Basic Ideas from Linear Algebra
2.2 Vector Norms
2.3 Matrix Norms
2.4 Finite Precision Matrix Computations
2.5 Orthogonality and the SVD
2.6 Projections and the CS Decomposition
2.7 The Sensitivity of Square Linear Systems
3 General Linear Systems
3.1 Triangular Systems
3.2 The LU Factorization
3.3 Roundoff Analysis of Gaussian Elimination
3.4 Pivoting
3.5 Improving and Estimating Accuracy
4 Special Linear Systems
4.1 The LDMT and LDLT Factorizations
4.2 Positive Definite Systems
4.3 Banded Systems
4.4 Symmetric Indefinite Systems
4.5 Block Systems
4.6 Vandermonde Systems and the FFT
4.7 Toeplitz and Related Systems
5 Orthogonalization and Least Squares
5.1 Householder and Givens Matrices
5.2 The QR Factorization
5.3 The Full Rank LS Problem
5.4 Other Orthogonal Factorizations
5.5 The Rank Deficient LS Problem
5.6 Weighting and Iterative Improvement
5.7 Square and Underdetermined Systems
6 Parallel Matrix Computations
6.1 Basic Concepts
6.2 Matrix Multiplication
6.3 Factorizations
7 The Unsymmetric Eigenvalue Problem
8 The Symmetric Eigenvalue Problem
9 Lanczos Methods
10 Iterative Methods for Linear Systems
11 Functions of Matrices
12 Special Topics
Index