生物脱硫
利用微生物或它所含的酶催化含硫化合物、将其所含的硫积放出来的过程
生物脱硫,又称生物催化脱硫(简称BDS),生物脱硫(BDS)是利用微生物或它所含的酶催化含硫化合物(H2S、有机硫)、将其所含的硫积放出来(转化为S0或单质S)的过程。
研究发展
生物脱硫,又称生物催化脱硫(简称BDS),是一种在常温常压下利用需氧、厌氧菌除去石油含硫杂环化合物中结合硫的一种新技术。早在1948年美国就有了生物脱硫的专利,但一直没有成功脱除烃类硫化物的实例,其主要原因是不能有效的控制细菌的作用。此后有几个成功的“微生物脱硫”报道,但却没有多少应用价值,原因在于微生物尽管脱去了油中的硫,但同时也消耗了油中的许多炭而减少了油中的许多放热量。科学工作者一直对其进行了深入的研究,直到1998年美国的Institute of Gas Technology(IGT)的研究人员成功的分离了两种特殊的菌株,这两种菌株可以有选择性的脱除二苯并噻吩中的硫,去除油品中杂环硫分子的工业化模型相继产生,1992年在美国分别申请了两项专利(5002888和5104801)。美国Energy BioSystems Corp (EBC)公司获得了这两种菌株的使用权,在此基础上,该公司不仅成功地生产和再生了生物脱硫催化剂,并在降低催化剂生产成本的同时也延长了催化剂的使用寿命。此外该公司又分离得到了玫鸿球菌的细菌,该细菌能够使C-S键断裂,实现了脱硫过程中不损失油品烃类的目的。EBC公司已成为世界上对生物脱硫技术研究最广泛的公司。此外,日本工业技术研究院生命工程工业技术研究所与石油产业活化中心联合开发出了柴油脱硫的新菌种,此菌种可以同时脱除柴油中的二苯并噻吩和苯并噻吩中的硫,而这两种硫化物中的硫是用其它方法难以脱除的。
BDS过程是以自然界产生的有氧细菌与有机硫化物发生氧化反应,选择性氧化使C-S键断裂,将硫原子氧化成硫酸盐或亚硫酸盐转入水相,而DBT的骨架结构氧化成羟基联苯留在油相,从而达到脱除硫化物的目的。BDS技术从出现至今已发展了几十年,仍处于开发研究阶段。由于BDS技术有许多优点,它可以与已有的HDS装置有机组合,不仅可以大幅度地降低生产成本,而且由于有机硫产品的附加值较高,BDS比HDS在经济上有更强的竞争力。同时BDS还可以与催化吸附脱硫组合,是实现对燃料油深度脱硫的有效方法。因此BDS技术具有广阔的应用前景,预计在2010年左右将有工业化装置出现。
机理
生物法净化恶臭气体的双膜—生物膜理论,此为生物法净化气体可分为三个步骤:
溶解
废气与水或固体表面的水膜接触污染物溶于水中或为液相中的分子或离子,即恶臭物质由气相转移到液相,此步为物理过程亨利定律。
吸附吸收
水溶液中恶臭成分被微生物吸附、吸收。从水中转移至微生物体内,作为吸收剂的水被再生复原,再去溶解新的恶臭成分。
生物降解
进入微生物细胞的恶臭成分作为微生物生命活动的能源或养分被分解和利用,使污染物得以去除。
进入微生物细胞内的有机物在细胞内酶作用下氧化分解,同时进行合成代谢产生新的微生物细胞。
用双膜—生物膜理论解释生物法处理含硫废气时也有与以上相似的三个步骤:
含硫气体与水或固体表面的水膜接触,气体中的硫溶于水成为液相中的分子或离子,硫从气相转移到液相,该过程为物理过程,遵循亨利定律。
水溶液中的硫在浓度差的推动下扩散到生物膜内被微生物吸附、吸收,硫从水中转移到微生物体内,作为微生物的营养物质和能源被分解利用。
方法
生物脱硫技术包括生物过滤法、生物吸附法和生物滴滤法,三种系统均属开放系统,其微生物种群随环境改变而变化。在生物脱硫过程中,氧化态的含硫污染物必须先经生物还原作用生成硫化物或H2S然后再经生物氧化过程生成单质硫,才能去除。在大多数生物反应器中,微生物种类以细菌为主,真菌为次,极少有酵母菌。常用的细菌是硫杆菌属的氧化亚铁硫杆菌脱氮硫杆菌及排硫杆菌。最成功的代表是氧化亚铁硫杆菌,其生长的最佳pH值为2.0~2.2。
存在问题
1.更好的菌株
一般认为,试剂硫芴是一种能代表煤中有机硫的典型化合物。在设计脱除煤中有机硫的微生物筛选实验中。大都用它作为培养基的营养成分,微生物降解硫芴有两种不同的途径。第一种称为“4s”途径,即由亚砜经过砜、磺酸盐最终到硫酸盐,这种方法是通过的特异性降解除去硫芴中的硫,而其中的碳会完整地保留下来,第二种是碳的破坏性代谢,这种代谢的结果是硫芴整体降解。很多研究人员一直试图分离或培养能降解或辅助降解硫芴的菌株,但分离到得菌株几乎都只能由破坏碳的途径降解硫芴。问题是要筛选到能从有机物中特异性降解的菌株。
2.稳定的脱硫作用
据称有几个菌株能用于脱除有机硫。但这些菌株及其脱除煤中有机硫的作用不够稳定,结构的重现性很差。几乎每个研究组织都曾提到有关稳定性和重现性的问题。用微生物处理煤炭的先决条件是要筛选到具有稳定脱硫能力的菌株,然而要获得这种菌株却是困难的。
3.有机硫的预定
需要某些新的分析方法来测定某中的有机硫。最通过的方法是美国检测材料学会编号为d2492的方法。这个方法采用化学法分析煤炭样品,测定总硫、硫酸盐和二硫化铁,从总硫含量中减去硫酸盐和二硫化铁含量,间接得到有机硫的含量。这种方法所得的结构并不是完全一致的,同一实验室分析的结构果可能有10%的误差,不同实验室重复分析的误差高达20%。美国检测材料学会组织正在全面的检测和校正这个方法。但是,这种误差程度的分析很难用来检测菌株的改进和煤处理的结构,因为一般的改进无法用这种方法准确地测定。测定煤中硫含量的另一种方法是元素分析。可以将一种电子微光束聚焦在煤的很小的区域或微粒上。如果分析的是煤中没有无机物的区域,则可用元素分析直接测定煤中的有机硫,这种技术非常有用,但由于特异性很高,用于常规分析并不方便,还可以用扩展x射线吸收精细结构技术特异性检测煤中的有机硫,但是,这种方法与电子微光束方法一样特异性太强,因而也不易广泛应用。
4.脱硫效果在微生物脱除煤中有机硫的研究中,最有趣的进展也许是igts7,能脱除高达91%的有机硫这是一个惊人的结果。这些结果是十分鼓舞人心的,因为她们首次证实了用生物处理可以脱除煤中的有机硫,而且脱除水平达到了空气净化标准。另一个有意义的进展涉及到好温细菌,据称这种细菌的同一菌株既可优先代谢有机硫,也可优先代谢无机硫,在有机硫和无机硫含量几乎相等的煤中,它可以脱除多达45%的有机硫,而无机硫的含量实质上保持不变。而对另一些煤炭样品,同样的菌株脱除了90%的无机硫,而有机硫含量却没有降低。
方向
生物脱硫技术是80年代发展起来的常规脱硫替代新工艺,具有许多优点:不需催化剂和氧化剂(空气除外),不需处理化学污泥,产生很少生物污染,低能耗,回收硫,效率高,无臭味。缺点是过程不易控制,条件要求苛刻等。日本已建成工业化装置,利用氧化亚铁硫杆菌处理炼油厂胺洗装置和克劳斯装置的排出气,硫化氢脱除率达99。我国郑士尼等在实验室条件下,用该菌对炼油厂催化干气和工业沼气进行脱硫,硫化氢去除率分别达71和46。王玮等成功地分离出一株具有脱硫能力的菌株。但国内生物脱硫技术还未形成一定规模的工业应用。预计优化脱硫工艺,更有效地控制溶解氧,提高单位硫的产率,并与已得到广泛应用的湿法脱硫技术相结合,是今后生物烟气脱硫技术发展的方向。
参考资料
最新修订时间:2023-05-19 10:16
目录
概述
研究发展
参考资料