流化催化裂化(Fluid catalytic cracking,又作Fluidized-bed catalytic cracking ,或Fluidized catalytic cracking ;简称FCC),是石油精炼厂中最重要的转化工艺之一。被广泛用于将石油
原油中高
沸点、高
分子量的
烃类组分转化为更有价值的
汽油、
烯烃气体和其他产品。 石油
烃类的裂化最初都是通过
热裂化(thermal cracking)完成;如今热裂化已几乎全部被催化裂化所取代,因为催化裂化可以产生更多具有高
辛烷值的汽油。此外,催化裂化也能产生更多拥有
碳碳双键的副产品气体(即更多的
烯烃),所以相比于
热裂化具有更高的经济价值。
简介
流化催化裂化(Fluid catalytic cracking,又作Fluidized-bed catalytic cracking,或Fluidized catalytic cracking ;简称FCC),是石油精炼厂中最重要的转化工艺之一。被广泛用于将石油
原油中高
沸点、高
分子量的
烃类组分转化为更有价值的
汽油、
烯烃气体和其他产品。石油
烃类的裂化最初都是通过
热裂化(thermal cracking)完成;如今热裂化已几乎全部被催化裂化所取代,因为催化裂化可以产生更多具有高
辛烷值的汽油。此外,催化裂化也能产生更多拥有
碳碳双键的副产品气体(即更多的
烯烃),所以相比于热裂化具有更高的经济价值。
流化催化裂化(FCC)的原材料(进料)通常采用原油中初馏点为340 °C或更高(
常压)以及平均
分子量在200~600或更高的部分。这部分原油通常称为重质瓦斯油(heavy gas oil)或重质减压瓦斯油(heavy vacuum gas oil, HVGO)。在流化催化裂化(FCC)工艺中,原材料在高温和适当的压力下与流化粉末状的
催化剂接触。催化剂打破了高沸点长链的烃分子,使之成为更短的分子、然后以蒸气的形态被收集。
经济
石油精炼厂使用流化催化裂化(FCC)来回应汽油的市场需求和解决高沸点区
原油分馏产品的过剩。2006年,世界范围内有400家石油精炼厂采用FCC单元(FCC Unit)。在这些精炼厂中,占总量 1/3 的原油被FCC工艺加工为高辛烷值的汽油以及燃料油(fuel oil)。2007年间,美国的FCC单元每日加工原材料840,000 m,而全世界的FCC单元的每日加工量为其两倍。
在欧洲和亚洲,FCC单元没那么普遍,因为欧洲和亚洲对于
柴油和
煤油有着很高的需求,而柴油和煤油可以通过氢化裂解供应。在美国,FCC更加普遍,因为美国对于汽油的需求更高。
流程图与工艺描述
现代FCC单元,全部都是全天24小时的无间断作业,在两次例行维修之间能连续运行3~5年。现在有好几种各不相同的现代FCC单元的专利设计。石油精炼厂如果想要采用现有的这些专利设计的其中之一,就需要向专利设计者购买使用许可。
对于一个FCC单元而言,可以有两种不同的布局配置方案:
(1)堆积型(Stacked configuration):反应器和催化剂再生器都放在同一个容器中,且反应器置于催化剂再生器的上方。
(2)肩并肩型(Side-by-side configuration):反应器和催化剂再生器放在两个不同的容器中。
肩并肩型布局
堆积型布局
每一种专利设计的许可发行人都声称自己的设计拥有独特的优势。其区别与比较不在本文的讨论范围内。
分馏塔
反应产物的蒸气(535 °C、1.72bar)从反应器的顶部流出,进入分馏塔(英语distillation column。亦常称之为 主分馏塔main fractionator)的底部。在主分馏塔中,反应产物蒸气被分馏为
石脑油(naphtha)、燃料油(fuel oil)、干气(off-gas)等各种FCC终产物。在经历去除含硫化合物的工艺后,石脑油就成为了具有高辛烷值的精炼厂调和汽油的组分之一。
主分馏塔的干气则被送至气体回收单元(gas recovery unit),并在其中被分离为
丁烷、
丁烯、
丙烷、
丙烯、以及分子量更小的气体(如
氢气、
甲烷、
乙烯、
乙烷)。有些FCC的气体回收单元也能分离出部分的乙烷和乙烯。
再生器中产生的烟气
由于各种FCC具有不同的设计,再生器(catalyst regenerator)中附着在使用过了的催化剂上的焦炭未必会完全燃烧为
二氧化碳(CO2)。每一种特定的FCC设计,都对应地有其所需的
一氧化碳(CO)和
二氧化碳之比。通过控制燃烧中的空气流量,来提供所需的一氧化碳和二氧化碳之比。
化学
石油原油的主要成分为烃类混合物,此外还有少量的含硫、含氮、含氧的有机化合物,以及微量的金属成分(如
铜、
铁、
镍、
钒等)。
历史
催化裂化技术由
法国机械工程师Eugene Jules Houdry(尤金·胡德利)开发,采用的是
固定床反应器。最早时候,生产汽油采用
原油蒸馏技术。1859年在宾夕法尼亚州的泰特斯维尔(Titusville,Pennsylvania)建起了第一套石油蒸馏的商业装置。随后,内燃机技术得到了很快的发展。到了1895年,
美国街头出现了第一辆以汽油为燃料的“无马拉的汽车”(horselesscarriages),当时也就土豪能消费得起,进入20世纪,全美国的汽车估计不超过8000辆。但是随后有了突飞猛进的发展,到了1910年,美国有50万辆汽车,此时汽油短缺凸显。
1913年,印第安纳州标准石油公司(注:美国石油公司经历了N次的兼并重组,此处根据英文资料原文翻译)的威廉·波顿博士(Dr.William Burton)开发了一套热裂化技术,在高温高压条件下将高沸点的石油大分子裂解成低沸点小分子的汽油馏分。为了提高发动机的运行效率,获得更高的
辛烷值,1923年,
标准石油公司在其中中添加了
四乙基铅。四乙基铅由通用汽车的托马斯·米吉利发现,可以大大提高辛烷值,但是有剧毒,对环境破坏严重。
法国是多煤少油的国家。20世纪20年代,Eugene Jules Houdry开始研究褐煤生产汽油的催化剂,他找了一位合伙人,药剂师E.A. Prudhomme,忽悠他搬到了巴黎附近的Beauchamp。在那里,Houdry与他的商业伙伴创办了一个实验室。褐煤制汽油项目得到了法国政府的资助,Houdry建了一套示范装置,每天加工60吨/褐煤。装置自1929年开始运行,但是运行结果不理想,效益上没有竞争力,法国政府撤资,这套装置也于同年关闭。
在研究煤制油的过程中,煤先转化成高粘度的煤焦油、烃类,然后再进一步转化成汽油馏分,后一步与石油裂化生成汽油相似。在这一过程中,Houdry发现酸性白土,有效成分为硅铝酸盐(aluminosilicate),可以将褐煤中提取出来的有转化成汽油馏分。于是,Houdry专注于将这一催化剂应用于石油加工过程。
1930年Vacuum石油公司的H.F. Sheets了解了Houdry研制催化剂的可靠结果,便邀请他到美国。经过成功的磋商,Houdry就把实验室跟他的合伙人带到了新泽西州保罗斯伯勒(Paulsboro,New Jersey)。1931年Houdry工艺公司(HoudryProcess Corporation)成立。同一年,Vacuum石油公司与纽约标准石油公司合并,成立Socony-Vacuum石油公司,也就是后来的美孚石油公司。1933年,每天200桶原料加工量的Houdry装置开车运行。但是经济大萧条削弱了石油业务,Socony-Vacuum公司无力再支持Houdry的工作,于是就同意Houdry从其他公司寻求支持。1933年,Houdry与Sun石油公司总裁J.Howard Pew及副总裁ArthurPew, Jr.会面。不久之后,Houdry,Socony-Vacuum 和Sun签订联合开发协议。1936年4月,Socony-Vacuum公司将Paulsboro一套老的热裂解装置改造成采用Houdry工艺的催化裂化装置。1937年3月,Sun石油公司新建一套日加工量为15,000桶的装置,并投入运行。装置以循环熔盐作为热载体,采用电动阀实现自动切换。高辛烷值的汽油收率达到50%,原高于常规热裂解25%的收率。Houdry装置可以生产100号高辛烷值航空汽油,为盟军的胜利做出了巨大贡献。Houdry航空汽油大大提升了盟军战斗机的作战性能。据统计,盟军战斗机比轴心国战斗机起飞与爬升的发动机动力高15~30%,有效载荷高25%,最大速度高10%,飞行高度高12%。1940年前6个月,大不列颠战役期间,每月有100万桶高辛烷值汽油装备盟军部队。在战争的前两年,Houdry装置生产了90%的催化裂化汽油。
Houdry,1892年4月18日,出生于法国巴黎郊外,老爹是一位富有的钢铁制造商。大学时,他在Ecoledes Arts et Métiers学习机械工程,也是学霸呀,获得法国政府的金奖。学霸在体育上也很牛,他还是校足球队队长,在毕业那年(1911年)获得法国的冠军。Hourdry毕业后去他爹的厂里,但是随后一战爆发,他在法国坦克军团服役。1917年,在Juvincourt战役中受重伤,获得军功十字勋章(Croixde Guerre),随后获得骑士荣誉勋章的荣耀。战争结束,Houdry重回父亲的工厂。Hourdry痴迷于
汽油发动机跟赛车,这也点燃了他研究汽油的兴趣。颇感觉个性十足,精力旺盛,很cool。1922年,他开始了对褐煤制汽油的研究。
二战期间,Houdry坚决反对维希政府与德国纳粹的媾和,当局把他开除国籍。随后他成为“法国永远(FranceForever)”美国分部的首脑,支持戴高乐将军。1942年1月,Houdry成为美国公民,他的两位儿子加入美军,他本人在工业装置的努力为战争胜利作出巨大贡献。
1938年,Houdry技术的成功已经显而易见了,新泽西标准石油公司联合了其他四家印第安纳标准石油公司、Anglo-Iranian石油公司、德克萨斯石油公司以及皇家壳牌,以及两家工程公司(M.W. Kellogg和UOP),成立了催化研究协会(CRA),从事一项规避Houdry固定床催化裂化专利的工艺技术开发。后来MIT的两位牛人Warren K. Lewis 及 Edwin R. Gilliland与CRA合作,开发了流化催化裂化(FCC)技术。