泄漏通道的
长度远远大于泄漏通道的
宽度和泄漏通道的高度(间隙值),泄漏通道长度是决定泄漏通道
截面积的主要因素。
毫米波三基线通道泄漏误差分析和补偿方法
对毫米波三基线干涉合成孔径雷达(Interferometric Synthetic Aperture Radar, InSAR)的多通道间泄漏误差进行了建模分析,推导了通道泄漏误差参数和干涉相位误差的数学表达式,定量分析了通道泄漏程度对干涉相位误差及高程误差的影响,并进一步提出了通道泄漏引入的干涉相位误差补偿方法,通过仿真实验给出了误差补偿和分析的结果,验证了该补偿方法的有效性。
泄漏幅度系数的影响
根据实际系统的经验,泄漏幅度系数可设定为泄漏相位延迟设定为0。为了便于理解,将理想干涉相位转化为斜距(两者之间为线性关系)。毫米波三基线InSAR实际系统的距离向波束宽度较窄,仅为3°,在计算中假定天线增益不变,距离向波束宽度取为15°,可以在更大斜距范围内分析干涉相位误差的变化情况。从泄漏幅度系数为-25dB时的不同构型基线干涉相位误差随斜距变化的情况,以及高程误差随斜距变化的情况和不同量级泄漏幅度系数对高程误差(峰值)的影响情况。
可以看出在只有泄漏幅度系数的影响下,干涉相位误差大致呈周期性震荡变化,周期随斜距增加而逐渐变大,每个周期内各基线构型引入的误差起伏规律并不一致。当泄漏幅度系数小于-50dB时,可以认为引入的高程误差被控制在适当的范围内。
泄漏相位延迟的影响
从干涉相位误差式可以看出,泄漏相位延迟决定了各正弦误差分量的初始相位,这可能使各误差分量叠加时,起到一定的对消或者增强作用。为便于分析,可假设在泄漏幅度系数为-25dB情况下,将所有通道的泄漏相位延迟都设置为同一相位值φk,通过仿真来观察其对干涉相位和高程的影响。从φk=0°,+10°的不同构型基线高程误差随斜距变化的对比情况,以及φk=0°,+30°的不同构型基线高程误差随斜距变化的对比情况。
可以看出在泄漏相位延迟使各误差分量叠加时,起到一定的对消或者增强作用,影响了周期性震荡起伏的形式。考虑到误差最大时,4个分量信号将同向叠加,相当于泄漏幅度系数最大恶化12dB。因此幅度决定性影响因素仍是泄漏幅度系数。为了将通道泄漏引入的高程误差控制在一定的范围内,需要泄漏幅度系数应优于50dBc。这对于毫米波铁氧体开关来说具有一定的实现难度,因此有必要研究通道泄漏误差的补偿方法。
通道泄漏误差补偿的仿真试验
根据系统参数和通道泄漏误差参数,利用干涉相位误差估计方法,以平地目标为例,在不考虑其它误差因素的情况下,进行了通道泄漏误差补偿的仿真试验。通过通道泄漏干涉相位误差和补偿后残余相位误差随斜距的变化关系,以及补偿后残余高程误差随斜距的变化关系,可以看出经过补偿后,高程误差控制在0.1 m 以内。
除了通道间泄漏误差,机载毫米波三基线InSAR还存在着其他误差因素,主要包括:(1)IQ不一致性引入的调制误差和解调误差;(2)通道幅相起伏和通道间幅相不一致引起的误差;(3)载机平台的运动误差;(4)雷达系统对回波延时测不准引起的延时误差;(5)载机平台对回波的多路径反射误差;(6)热噪声和相干斑引起的随机误差等。这些系统误差最终会影响到InSAR的干涉相位测量精度。
误差中因素(1)、因素(2)可以通过内定标测试来提取误差,因素(3)可以通过高精度的位置姿态测量系统(Position and Orientation System,POS)获取,因素(4)可以通过外定标精确测量,以上4项误差都在单视复图像成像前进行补偿,因此对后续干涉条纹的通道泄漏误差补偿影响不大。因素(5)与通道泄漏误差较为类似,在毫米波InSAR中,由于天线波束较窄,而且没有采用雷达罩,因此多路径的问题并不严重。因素(6)对通道泄漏误差补偿的影响不可忽略,在仿真试验中应予以考虑。
膨胀机泄漏通道长度变化规律的理论分析
对于回转式的容积型膨胀机,内部泄漏是影响其性能的重要因素。单螺杆膨胀机具有复杂的三维空间结构,使得其内部泄漏规律变得很复杂。为了研究单螺杆膨胀机内泄漏规律,从单螺杆膨胀机的几何结构出发,建立泄漏通道长度的数学模型,并分析进气孔口,螺杆直径和星轮直径等因素对泄漏通道长度的影响规律。
进气孔口尺寸的影响
单螺杆膨胀机的进气孔口是位于与螺杆进气侧螺槽对应机壳上的三角形孔口,进气孔口螺旋形斜边的形状与开始进气时螺槽外缘螺旋线重合。进气孔口的位置决定了单螺杆膨胀机进气终了时的进气容积,调节进气口大小可改变内容积比,影响膨胀比的大小。
1) 当Smax=r1·2δ·i,即螺头处槽道外缘线长度正好等于进气口的外边的长度,此时对应的内容积比约为5.6,这时后一螺槽还没与进气口接通就已经结束进气,此外,在开始进气时,前一螺槽的影响也很小。
(2) 当Smax〉r1·2δ·i,即进气口的外边的长度大于螺头处槽道外缘线长度,内容积比小于5.6的都属于这种情况。如τ=3.0 时,前后螺槽对进气过程都有很大的影响,进气过程延长。
(3) 当Smax〈r1·2δ·i,即进气口的外边的长度小于螺头处槽道外缘线长度,内容积比大于5.6的都属于这种情况。如τ=9.0时,进气过程中,前后螺槽都不会与进气口接通,进气过程缩短,膨胀过程延长。不同内容积比下单个螺槽总泄漏线的变化曲线。进气孔口大小只会影响进气过程的泄漏线长度,对膨胀过程没有影响,内容积比越小,总泄漏线起伏变化得越明显,主要是由前后螺槽与进气孔口相通引起的。内容积比越大时,总泄漏线长度变短,进气过程缩短,膨胀过程延长。
螺杆直径和星轮直径的影响
螺杆直径和星轮直径是单螺杆膨胀机中两个重要的基本参数,对泄漏线长度的变化有很大的影响。在内容积不变的情况下,具体分析二者大小对泄漏线长度的影响规律。
(1) 等径。同时改变螺杆直径和星轮直径的大小,观察泄漏线长度的变化,得到单个螺槽总泄漏线长度变化趋势大体一致,但曲线的尖角,会随着直径增大斜率更大,这是由于随着单螺杆膨胀机的尺寸增大,变化得更明显,因而受进气孔口的影响也越大。
(2) 不等径。在螺杆直径不变的情况下,可通过改变星轮直径增大基元容积,但同时也增加了泄漏线长度。比较了等径和不等径六螺槽总泄漏线随螺杆转角的变化,相同中心距、星轮齿宽和内容积比的条件下,不等径的泄漏线更长。通过等径和不等径单螺槽总泄漏线随螺杆转角的变化。结果表明,不等径时的泄漏线长度比等径的总体要长,且啮合角要大,对应螺杆转角大4.6°,不等径相对等径来说,在进气开始时,泄漏线长度增加得更快,进气即将结束时,螺杆转角在60°附近泄漏线长度减小的更迅速,即螺杆和星轮直径不相等要比相等的情况受进气孔口影响大。