污泥膨胀
环境学专有名词
由于某种因素的改变,活性污泥质量变轻、膨大、沉降性能恶化,SVI值不断升高,不能在二沉池内进行正常的泥水分离,二沉池的污泥面不断上升,最终导致污泥流失,使曝气池中的MLSS浓度过度降低,从而破坏正常工艺运行的污泥,这种现象称为污泥膨胀。污泥膨胀是活性污泥法系统常见的一种异常现象。
基本信息
污泥膨胀指污泥结构极度松散,体积增大、上浮,难于沉降分离影响出水水质的现象。基本上各种类型的活性污泥工艺都会发生污泥膨胀,而且一旦发生难以控制,通常都需要很长的时间来调整。污泥膨胀的发生率是相当高的,在欧洲近百分之五十的城市污水厂每年都会有不同程度的污泥膨胀发生,在中国的发生率也非常高。针对污泥膨胀,各方面的理论很多,但并不完全一致,甚至有很多相互矛盾,这给水处理工作者造成很大的麻烦。
主要特征
污泥结构松散,质量变轻,沉淀压缩性能差;SV值增大,有时达到百分之九十,SVI达到300以上;大量污泥流失,出水浑浊;二次沉淀难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。
污泥膨胀是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。
污泥膨胀的发生率是相当高的,在欧洲近50%的城市污水厂每年都会有不同程度的污泥膨胀发生,在中国的发生率也非常高。基本上各种类型的活性污泥工艺都会发生污泥膨胀。污泥膨胀不但发生率高,发生普遍,而且一旦发生难以控制,通常都需要很长的时间来调整。针对污泥膨胀,各方面的理论很多,但并不完全一致,甚至有很多相互矛盾,这给水处理工作者造成很大的麻烦。
分类
活性污泥膨胀可分为:由于污泥中丝状菌过度繁殖引起的丝状菌性污泥膨胀以及无大量丝状菌存在的非丝状菌性污泥膨胀。通常多数情况下是丝状菌性污泥膨胀。
丝状菌性污泥膨胀
正常的活性污泥结构较稠密,菌胶团生长良好,显微镜下观察到菌胶团外缘整齐清晰,并可发现有纤毛类原生动物。污泥呈矾花状,絮凝、沉降和浓缩性能良好。污泥体积指数(SVI)在100左右,污泥沉降体积(SV)在30%左右,含水率约90%。从污泥的结构来看,活性污泥絮状体是由菌胶团和丝状菌组合而成的。丝状菌犹似絮状体的骨架,菌胶团粘结在骨架上,相互交织在一起如同骨和肉的关系。对正常的活性污泥来说,它们两者之间有一个适当的比例关系。如果丝状菌生长繁殖过多,菌胶团的生长繁殖将受到抑制,好多丝状菌伸出污泥表面之外,使得絮状体松散,沉淀性能恶化,污泥体积膨胀,污泥沉降体积(%)及污泥体积指数(SVI)均很高,这就是丝状菌性污泥膨胀。膨胀严重时,显微镜下观察的整个视野几乎都是丝状菌。这种丝状菌性膨胀的污泥体积指数(SVI),一般可达200~2000,视膨胀程度而异。丝状菌性膨胀污泥的外观不同于正常污泥,上清液少但亦非常清澈。
这种由于丝状菌过度繁殖而引起的活性污泥膨胀,占发生污泥膨胀的大多数,故一般人们常把这种丝状菌性污泥膨胀,习惯上通常为污泥膨胀。
非丝状菌性污泥膨胀
活性污泥膨胀,除了上述的一种类型外,还有并非丝状菌过度繁殖而引起的一种类型,称之为非丝状菌性污泥膨胀。这种膨胀是由于在活性污泥菌体外积蓄高黏性多糖类物质而形成的。可见,它和上述一种类型污泥膨胀的区别,就在于:前者是直接由于微生物增殖造成,而后者是南于代谢产物(高黏性多糖类)积蓄造成。由于这种高黏性代谢产物(多糖类)分子中具有许多氢氧基,与水的结合力很强,呈亲水性,是一种非常稳定的亲水胶体。而且这种高黏性物质在活性污泥中覆盖着微生物,一般呈凝胶状态的形式。凝胶的特征是需吸收大量的水予以膨润。因此发生高黏性膨胀污泥时,其外观体积显著增大。它所含的结合水,比正常的活性污泥要多出好几倍。故有时人们亦称这种污泥膨胀为水涨性污泥膨胀或菌胶团污泥膨胀。亦就是说,在这种膨胀污泥絮状体中,含结合水很高的菌胶团和丝状菌之间的比例和前述丝状菌性膨胀污泥正好相反,即菌胶团占了多数,丝状菌很少或甚至看不到,即使看到也是为数极少的短丝状菌。因而,亦使得絮状体松散。
不同于丝状菌性膨胀污泥,非丝状菌性膨胀污泥的沉淀、浓缩性能变差是由于菌胶团含有大量水分,体积膨胀,而使污泥容重减轻,压缩性能恶化之故。这种膨胀污泥的污泥体积指数(SVI),亦可高达400。在实际运转中,发生这种类型的污泥膨胀,相对丝状菌性污泥膨胀来说,还是极少数的。故一般人们提到污泥膨胀,往往指的是前面一种(丝状菌性污泥膨胀),而对后面一种(非丝状菌性污泥膨胀)则有所忽视。
影响因素
污泥负荷对污泥膨胀的影响
一般认为活性污泥中的微生物的增长都是符合Monod方程的:式中μ----微生物比增长速率,d-1 ;μ=1/X * dX/dt X----生物体浓度,mg/L;
S----生长限制性基质浓度(残留与溶液中的基质浓度),mg/L;
Ks-----饱和常数(半速度常数),其值为μ=μmax/2时的基质浓度,mg/L;
μmax-----在饱和浓度中微生物的最大比增长速率,d
大多数的丝状菌的KS和μmax值比菌胶团的低,所以,按照以上Monond方程,具有低KS和μmax值的丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团在高基质浓度条件下才占优势。同样认为低负荷对于丝状菌生长有利的理论还有表面积/容积比(A/V)假说。这里的表面积和容积,是指活性污泥中微生物的表面积与体积。该假说认为伸展于絮凝体之外的丝状菌的比表面积(A/V)要大大超过菌胶团细菌的比表面积。当微生物处于受基质限制和控制的状态时,比表面积大的丝状菌在取得底物方面要比菌胶团有利,结果在曝气池内丝状菌就变成了优势菌。
负荷易导致污泥膨胀这一观点无论是在实际运行中还是在理论上都有了较为成熟的解释。但在中国,通常生化反应的负荷设计都是较高的,的大量污泥膨胀却是在高负荷条件下发生的。事实上,在高负荷条件下的污泥膨胀往往是由于供氧不足、曝气池内DO浓度降低引起的。
溶解氧浓度对污泥膨胀的影响
微生物对有机物的降解过程实质上就是对氧的利用过程。溶解氧在活性污泥法的运行中是一个重要的控制参数,曝气池中DO浓度的高低直接影响着有机物的去除效率和活性污泥的生长。低DO浓度一直被认为是引起丝状菌污泥膨胀的主要因素之一。丝状菌由于具有较大的比表面积和较低的氧饱和常数,在低DO浓度下比絮状菌增殖得快,从而导致丝状菌污泥膨胀。根据各方面的研究反应,DO对于污泥膨胀影响的的临界值并不确定。DO浓度的要求是与污泥负荷息息相关的,负荷越高,则对应的临界值就越大。这一值的确定与工艺选择、池型及进水类型都有着密切关系,必须根据实际情况结合实验才可以得出。
成因
在活性污泥法运转中,活性污泥膨胀是个严重问题。它的成因是相当复杂的。各国不少学者对此都作了很多的研究,但是迄今还没有得到一个圆满的解释。从已有的研究成果来看,活性污泥膨胀的成因可归纳如下:
废水水质
在废水生物处理中,废水本身就是微生物的培养基。因此,废水水质和微生物的生理活动关系十分密切。从上面提到的两种污泥膨胀来看,无不与微生物的生理活动有关。即污泥膨胀或是和微生物增殖有关(如丝状菌性膨胀);或者是由于代谢产物积蓄之故(如非丝状菌性膨胀)。由此可见,废水水质是污泥膨胀成因中极为重要的因素。
关于废水水质问题,可以从以下几个方面进行分析:
(1) 有机物
废水中所含的有机物,种类较多,其中究竟哪些有机物和污泥膨胀关系较大呢?在回答这个问题之前,人们可以先从和污泥膨胀有关的微生物生理习性去考虑。如哪些有机物和营养成分易为丝状菌利用及自身繁殖,或易为微生物代谢分泌出高黏性多糖类物质。根据以往的经验,有以下几点需要注意。
① 废水中碳源含量多且以糖类为主时,易发生污泥膨胀。据经验介绍,如葡萄糖、蔗糖、乳糖等糖类物质含量较高的废水是经常可能出现污泥膨胀现象的。而同样是碳水化合物,如不溶性高分子的淀粉,就没有那样的情况。一般认为,在导致丝状菌性污泥膨胀的微生物中,最有代表性的是球衣菌属,它能将糖类物质直接作为能源予以利用,并易于繁殖。丝状菌性膨胀的另一种致因微生物,如硫细菌属,亦是这样。此外。丝状菌性膨胀的其他致因微生物,如蜡状芽孢杆菌蕈状变种和白地霉,亦都能直接利用单糖类物质进行繁殖。其次,在糖类碳水化合物含量多时,活性污泥微生物亦能够较易地将其代谢分泌出高黏性多糖类物质。而这些物质过多,覆盖在菌胶团微生物表面,将导致非丝状菌性污泥膨胀
由上可见,废水中含糖类碳源较多时,对丝状菌的繁殖及高黏性多糖类物质的生成都是极大的促进,并易于导致污泥膨胀,可以说是形成污泥膨胀的一个十分重要的因素。
② 废水中可溶性有机物含量多时,亦易于发生污泥膨胀。一般,这里所指的可溶性有机物,主要是低分子可溶性有机物,也包括上述的单糖、二糖类物质。实际上,在乳品生产废水、发酵废水、制糖废水(含大量可溶性有机物)的处理过程中,易于发生污泥膨胀。一般来说,活性污泥中的丝状菌与其他游离细菌相比较,对高分子物质的水解能力弱,也难于吸收不溶性物质。为此,当废水中含可溶性有机物多时,丝状菌就易于利用与自身繁殖。这样也就易于发生丝状菌性污泥膨胀。而对高黏性的非丝状菌性膨胀来说,由于废水中含有较多的可溶性糖类物质,活性污泥微生物亦就易于利用它们产生更多的高黏性多糖类物质,也就导致这一类型污泥膨胀的发生。
(2) 氮和磷营养物质
活性污泥微生物,为了进行正常的生长、繁殖,除了需要碳源外,还需氮、磷等营养物质。氮、磷和碳之间应有适当的比例,一般经验提出的比例通常为:BOD5:N:P=100:5:1。当废水中氮、磷含量不足时,亦易发生污泥膨胀。如在活性污泥中,丝状菌的表面积相对其他微生物来说要大些,易于摄取底物。故当氮、磷含量相对BOD5的比例不足时,由于具有上述特点,丝状菌比其他微生物较易利用底物,仍能正常生活,进行生长繁殖。而在这种情况下,活性污泥中其他微生物,由于氮、磷得不到满足,以致逐渐衰退。于是丝状菌大量增加,导致了丝状菌性污泥膨胀的发生。
另外,当废水中氮、磷源不足时,相对而言就是碳源较多。在这种情况下,如果糖类物质较多,代谢产物多糖类高黏性物质增加,使得活性污泥易于发生非丝状菌性膨胀。
溶解氧
在曝气池运行中,混合液的溶解氧含量亦是个重要的问题。因为不同的微生物对溶解氧的要求亦是不同的。从以往的实践经验来看。曝气池中若溶解氧浓度太低是不利的,容易发生污泥膨胀的现象,虽然丝状菌是好氧性细菌,但是它们和活性污泥中的其他好氧菌不同,在活性污泥的低溶解氧条件下大部分好氧菌几乎不能继续生长繁殖,但丝状茵仍能适应这种环境,并继续生长繁殖。从而使得丝状菌性污泥膨胀易于发生。而且即使将它们保持在相当长时间的厌氧状态下,也不会失去活力,如一旦恢复好氧状态,它们就会重新生长繁殖。
据有关经验介绍,当曝气池混合液溶解氧为0.5 mg/L以下时,活性污泥镜检中发观有大量的硫细菌(贝氏硫菌和丝硫菌),但很少发现有带衣鞘的丝状菌(球衣细菌)。例如在上海春夏之交和盛夏季节,水温较高(高达30℃以上),氧分压低,而且又值用电高峰,供电紧张,曝气池中往往呈现缺氧情况,溶解氧浓度偏低,活性污泥常发生丝状膨胀现象,镜检结果系由丝硫菌、贝氏硫菌过度生长引起。故当溶解氧偏低(一般在0.5 mg/L以下)及水温较高(一般在30℃~36℃)时,适宜于丝硫菌、贝氏硫菌生长繁殖,污泥膨胀是一种硫细菌性的丝状膨胀。而到了秋季,水温在20℃~28℃之间时,溶解氧浓度略有升高,发现活性污泥的丝状膨胀则是由于贝氏硫菌和球衣菌过度生长的结果。事实上,在溶解氧浓度较高情况下,如高达7 mg/L时,仍可发现污泥的丝状膨胀,其中丝状菌以球衣菌占优势。这说明溶解氧浓度的高低,对主要由球衣菌引起的丝状膨胀,都是可能发生的。
由上可见,溶解氧浓度对活性污泥的膨胀来说,和废水水质相比较,只能是第二位因素。但是溶解氧过低亦是不合适的,据实际经验,一般应将溶解氧控制在不低于2 mg/L的水平,如2~4 mg/L,过高亦是没有必要的。
温度
微生物都有各自的适宜生长温度。如球衣菌的适宜生长温度在30℃左右,在15℃以下生长不良。丝硫菌、贝氏硫菌的适宜生长温度亦在30℃~36℃之间。故在夏季高温季节,遇上溶解氧偏低时,活性污泥易发生如上所述的硫细菌性丝状膨胀。而在冬季低温季节,则活性污泥不易发生膨胀。
pH值
活性污泥法运行中,为了使活性污泥正常发育、生长,曝气池液的pH值应保持在一个合适的范围内,一般为6.5~8.0。当pH值在这个合适范围内,并遇上其他条件亦合适时,人们就可获得沉降、浓缩性能良好的活性污泥。
根据实际经验,若曝气池液的pH值长时间保持在6.0以下时,活性污泥中丝状微生物就会占据优势,污泥的体积指数SⅥ值增高,从而导致污泥发生丝状菌性膨胀。因为当pH值在5.8~8.1范围内,适合于浮游球衣菌的生长繁殖。此外,白地霉亦可能在pH值为3~12范围内增殖。根据这种情况,可以说在酸性条件下特别有利于丝状菌的生长、繁殖,并成为污泥的丝状菌性膨胀的诱因。
负荷率
活性污泥微生物通过驯化、培养,都可找到一个最佳的运行条件和生长环境。因此,为了保持活性污泥法系统的正常运行,就应有一个合适的负荷率(指生物负荷率或污泥负荷率),或称最佳负荷率。在运行中负荷率过高、过低均是不适宜的,并都有可能发生污泥膨胀。这是由于微生物的生长环境发生了变化,活性污泥原有的生态将失去平衡,生物构成亦将发生变化的缘故。一般来说,当负荷率过高时,正常活性污泥发展到严重膨胀污泥,所需时间相对而言要短些。而负荷率愈高,则时间愈短。
相对而言,负荷率过高时,可被微生物摄取的有机物亦多。如这种有机物含糖类物质及可溶性低分子成分较多时,则如前所述,易发生丝状菌性污泥膨胀。当然,这种情况如前所述碰到低温时,活性污泥中亦可能由于高黏性物质的积累,发生非丝状菌性污泥膨胀。
当负荷率过低时,也有可能发生丝状菌性污泥膨胀,这主要是由于丝状微生物在这种场合下,仍可能取得竞争优势的缘故。
危害
发生污泥膨胀后,二沉池出水的SS将会大幅度增加,直至超过国家排放标准,同时导致出水的CODcr和BOD5也超标。如果不立即采取控制措施,污泥持续流失会使曝气池内的微生物数量锐减,不能满足分解有机污染物的正常需要,从而导致整个系统的性能下降,甚至崩溃。如果恢复,需要从培养、驯化活性污泥重新开始。
解决办法
应急措施
临时应急主要方法是投加药物增强污泥沉降性能或是直接杀死丝状菌。投加铁盐铝盐等混凝剂可以直接提高污泥的压密性保证沉淀出水。另外,投加一些化学药剂,如氯气,加在回流污泥中也可以达到消除污泥膨胀现象。投加过氧化氢臭氧也可以起到破坏丝状菌的效果。
采用这种方法一般能较快降低SVI值,但这些方法并没有从根本上控制丝状菌的繁殖,一旦停止加药,污泥膨胀现象可以又会卷土重来。而且投药有可能破坏生化系统的微生物生长环境,导致处理效果降低,所以,这种办法只能做为临时应急时用。
改善生化环境
污水厂发生污泥膨胀的时候,一般无法从工艺流程、池型和曝气方式的改变来解决,只能在正在运行的流程基础上通过改变生化池内的微生物生长环境来抑制或消除丝状菌的过度繁殖。在不同的工艺和水质的情况下,很难有一个放之四海而皆准的解决方案。但生化工艺常遇见的几种应该注意的问题必须加以注意。
污水性质的控制
首先应该检查和调整pH值,当pH值低于5以下时,不仅对污泥膨胀会有利,而且对正常的生化反应也会有一定的危害,所以当pH值偏低时应及时调整。另外在北方寒冷地区一定应注意冬季时的水温,若水温偏低应加热,因为低温也会导致污泥膨胀的发生。采用鼓风曝气能有效的在冬季较高的水温。
当污水中营养成份不足或失衡时,应补充投加。N、P含量应控制在BOD:N:P=100:5:1左右。
若污水处理生化系统前已有消化现象的发生,产生的低分子有机酸将有利于丝状菌的生长,这时可以对废水在调节池内预曝气来加以改善。一般采用空气扩散器向3-5米有效水深的调节池曝气,供气量可以控制在0.5-1.0m3/废水立方米·小时。它能使调节池的废水保持新鲜,并有效防止由于厌氧所会带来的臭气
保持池内足够的溶解氧对于高负荷的生化系统特别重要,3)一般至少应控制DO>2毫克/L。
沉淀池内的污泥应及时排出或回流。
防止其发生厌氧现象。若发生厌氧现象,产生的各种气体吸附在污泥上,也会使污泥上浮,沉降性能变差。而且发生厌氧的污泥回流也会引发丝状菌的大量繁殖。这种情况时除排泥和清除沉淀池内的死角,并缩短污泥在池内的停留时间外。还应提高曝气池DO值。使出入沉淀池的水保持较高的溶解氧。或者在污泥回流进入生化池前曝气再生。
控制方法
絮凝法
膨胀活性污泥的密度一般比水小,作为应急处理措施,可考虑投加混凝剂,以改善其沉降性能。初步选择了常用的高分子混凝剂——阳离子聚丙烯酰胺和无机混凝剂——硫酸亚铁进行对比试验。
在处理水量为50L/h的小试装置中投加阳离子型聚丙烯酰胺,使其浓度分别达到10、20、30、40、50和60mg/L,污泥的SV值变化。聚丙烯酰胺的投加对于污泥的沉降性能的改善有一定的效果,且存在一个最佳投加量,但是,效果不是很理想。该中水回用系统采用新型淹没式复合膜生物反应器,曝气量大、水力搅拌强烈,聚集起来的絮体颗粒容易遭到破坏,从而导致混凝效果不理想;当投加量高于最佳投加量时,絮凝体除中和胶体的负电荷以外,过多的正电荷又使胶体离子带上正电荷而重新稳定。处理水量为50L/h的小试装置中投加硫酸亚铁溶液,使其质量浓度在10至180mg/L之间变化,污泥的SV值变化;投药前后菌胶团状态。
投加硫酸亚铁溶液后污泥沉降性能得到明显改善,SV值下降了约百分之十五。但是超过60mg/L后污泥沉降性能没有进一步的改善,所以确定实际运行时硫酸亚铁的投加量为60mg/L。在投加硫酸亚铁(60mg/L)前后,测量混合液PH值从7.63降至7.07,对污泥活性的负面影响很小。阳离子型聚丙烯酰胺的投加效果受水力条件等因素的限制不是十分理想,同时其单体有毒性、难降解,存在二次污染问题,经济效益较投加硫酸亚铁差。硫酸亚铁价格便宜、使用简单,对膜及污泥没有负面影响,其对污泥密度的影响是有效的,但其不能从根本上解决营养比例失调的问题,所以只能作为应急控制措施。
营养盐调整法
在污泥膨胀问题的研究中,对污泥膨胀的恢复与控制是一个十分重要的环节。在该中水回用工程的运行过程中发现,投加硫酸亚铁后,沉降性能一度改善的活性污泥在原有有机负荷条件下如停止投加,继续进行处理,则活性污泥的沉降性能就会逐渐恶化,三日后恢复到投加前的状态。所以需要寻找一种在活性污泥膨胀后行之有效的恢复控制方法。
其他控制方法
在污泥粘性膨胀最严重的情况下(用容器装一些污泥,无论用什么方法污泥始终粘附在容器的表面),可考虑适当排掉一些膨胀的污泥,再重新取一些新泥,以减少多糖类物质对污泥的覆盖;同时增加水力停留时间,使没有被完全氧化的有机物有足够的时间被消耗掉。
由于原水中洗涤剂含量很高,加之曝气强度较大,经常出现白色、粘稠的泡沫,并且越积越多,当污泥发生膨胀时,危害较大。除投加消泡剂以外,采取水力消泡的方法。在反应池上方安装喷头,用MBR反应器的出水对反应池上部进行喷淋,以控制膨胀污泥和泡沫对反应器的危害,会取得较好效果。
在控制理论方面也丰富了污泥膨胀的控制。
工艺
国内对活性污泥工艺的设计通常采用中等负荷(0.3KgBOD5/(kgMLSS·d)),而在实际中人们从经济角度考虑总是采用较高的负荷,所以高负荷下的污泥膨胀在中国具有较为广泛的意义。在高负荷情况下,最常见的是DO不足,所以先采取提高气水比,强化曝气,在推流式曝气池内首端采用射流曝气等方式,观察一段时间,找出问题的所在。 如果在以上措施采取后一段时间情况仍无好转,则可考虑在曝气池头部加设软填料。这一部份对于有机酸去除率很高,从而去除丝状菌的生长促进因素,帮助絮状菌生长。这个方法比较有效,但造价较高,且对以后的维修管理造成不便。或者在曝气池前设置一个水力停留时间约为15min的选择器,一般能很有效的抑制丝状菌的生长。
对于间歇式进水的SBR工艺来说,反应器本身是完全混合式的,而且在时间上其污染物的基质就存在浓度梯度,所以无需再另设选择器。通常间歇式SBR工艺产生污泥膨胀的原因是,污泥浓度过高,而进水有机物浓度偏低或水量偏小而导致污泥负荷偏低。对于这种情况,降低排出比,提高基质初始浓度,并对SBR强制排泥,一般就能够对污泥膨胀现象进行有效的控制。而对于连续进水的SBR如ICEAS和CASS等工艺如果发生污泥膨胀的话,就有必要在进水端设置一个预反应区或生物反应器了。
负荷活性污泥工艺
低负荷活性污泥工艺曝气池内基质浓度较低,丝状菌容易获得较高的增长效率,所以是最容易产生污泥膨胀。除了在水质和曝气上想办法外,最根本和有效的是将曝气池分成多格且以推流方式运行,或增设一个分格设置的小型预曝气池作为生物选择器,在这个选择器内采用高污泥负荷,吸附部分有机物并消除有机酸。这个办法不但有助于抑制污泥膨胀,并能有效的改善生化处理效果。在曝气池内增加填料的方法也同样在低负荷完全混合工艺中适用。
对于A/O和A2/O工艺可通过在在好氧段前设置缺氧段和厌氧段以及污泥回流系统,使混合菌群交替处于缺氧和好氧状态,并使有机物浓度发生周期性变化,这既控制了污泥膨胀又改善了污泥的沉降性能。而交替工作式氧化沟和UNITANK工艺等连续进水的系统因为其本身在时间和空间上就有了实际上的“选择器”,所以对污泥膨胀有着效强的控制能力。如果这两种工艺发生污泥膨胀,则可通过调整曝气控制溶氧量和控制回流污泥量来调节池内的污泥负荷及DO,通过一段时间的改善,一般能够控制住污泥膨胀现象。
污泥膨胀由于丝状菌的种类繁多,且生长适宜的环境也不尽相同。在不同工艺不同水质的情况下,微生物的生长环境非常微妙,这就要求发生污泥膨胀时,需要水处理工作者根据实际情况作大量切实的实验和分析,大胆实践,才能解决污泥膨胀问题。
丝状菌是生长处理微生物中不可缺少的一部份。污泥膨胀现象在于丝状菌的过度生长,消除污泥膨胀的根本在于使丝状菌与活性污泥菌胶团平衡生长;完全混合式较推流式更易产生污泥膨胀,低污泥负荷较高污泥负荷易产生污泥膨胀;进水水质在水温、pH、营养成份及是否有处理前的消化反应等方面是处理污泥膨胀应该首先考察的问题;高负荷下的污泥膨胀一般在于溶氧不足;低负荷下的污泥膨胀采用生物选择器是行之有效的办法。由于丝状菌的多样性,关于污泥膨胀的理论解释和实际报道仍有很多不尽一致,大胆实践不断总结并和同行广泛交流,才能更快找到行之有效地解决方法。
参考资料
最新修订时间:2024-07-30 19:10
目录
概述
基本信息
主要特征
参考资料