有理数乘法法则即两数相乘,同号得正,异号得负,并把绝对值相乘。任何一个数与0相乘,积仍为0。2.乘积是1的两个数互为
倒数。多个有理数相乘,几个不是0的数相乘负因数的个数是偶数时,积为正数,负因数的个数是奇数时,积为负数。
数学术语
具体步骤:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘。例:(-5)×(-3)= +(5 x 3)=15 (-6)×4= - (6 x 4)= -24
(2)任何数与0相乘,积为0. 例:0×1=0
(3)几个不等于0的数相乘,积的符号由负
因数的个数决定。当负因数有
奇数个数时,积为负数;当负因数有偶数个数时,积为正数。并把其绝对值相乘。例:(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)× (-25)=积为负数
(4)几个数相乘,有一个因数为0时,积为0. 例:3×(-2)×0=0 (5)乘积为一的两个有理数互为倒数(reciprocal)。例如,—3与—1/3,—3/8与—8/3
(5)0没有倒数
(6)如果有两个有理数的乘积为1,那么称其中一个数为另一个数的倒数(reciprocal),也称这两个有理数互为倒数。例如:3与3分之一互为倒数,负八分之三与负三分之八互为倒数。
[同号得正,异号得负]
有理数
有理数
有理数是指可以写成分数形式的数统称为有理数
任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。
其中包括整数和通常所说的分数,此分数亦可表示为
有限小数或无限循环小数。
这一定义在数的十进制和其他进位制(如二进制)下都适用。
有理数的乘法
一、 学情分析:在此之前,本班学生已有探索
有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、 课前准备把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、 教学目标1、 知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。2、 能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。3、 情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。
四、 教学重点、难点重点:运用有理数乘法法则正确进行计算。难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,水深20米,问放水抗旱前水库水深多少米?学生:26米。教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。以原点为起点,规定向东的方向为正方向,向西的方向为负方向。a. 2 ×3看作向东运动2米,×3看作向原方向运动3次。结果:向 运动 米2 ×3= b. -2 ×3-2看作向西运动2米,×3看作向原方向运动3次。结果:向 运动 米-2 ×3= c. 2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。结果:向 运动 米2 ×(-3)= d. (-2) ×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。结果:向 运动 米(-2) ×(-3)= e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则a.符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=( ) 同号得 (-)×(+)=( ) 异号得 (+)×(-)=( ) 异号得 (-)×(-)=( ) 同号得 b.积的绝对值等于 。c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中
(3)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。
(4)学生做 P76 练习1的①、③两题,教师评析。
(5)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。
4、 讨论对比,使学生知识系统化。 有理数乘法 有理数加法 同号 得正 取相同的符号 把绝对值相乘(-2)×(-3)=6 把绝对值相加(-2)+(-3)=-5 异号 得负 取绝对值大的加数的符号 把绝对值相乘(-2)×3= -6 (-2)+3=1用较大的绝对值减小的绝对值 任何数与零 得零 得任何数
5、 分层作业,巩固提高。
六、 教学反思:本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是
建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念——为了每一位学生的发展的具体体现。本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习拓展。