暂态过电压是指快速突升的高电压脉冲叠加到供电电压上引起电压升高,它是一种在持续时间范围内衰减较慢的过电压暂态过电压是由于
断路器操作或发生
短路故障,使电力系统经历过渡过程以后重新达到某种暂时稳定的情况下所出现的过
电压,又称工频电压升高。
简介
电网暂态过电压不仅决定系统中电力设备的绝缘水平,也威胁设备设施的安全运行,含有缺陷的设备在过电压作用下可能会造成绝缘击穿,甚至引发爆炸事故。这使得电网暂态过程的研究一直是电力科技工作者们极其重要的工作,也是国内外科研院所、高校以及IEEE、IEEJ、IET和CSEE等学术团体所关注的热门课题。此外,其他相关领域技术上的发展也促进了该课题的研究,比如:
金属氧化物避雷器(MOA)的设计和应用,EMTP仿真计算和分析,以及操作、雷电过电压和长期交流电压应力作用下对电力设备绝缘材料老化特性影响的V-t数据积累、分析和应用,等等。为保证电力系统安全、稳定和可靠运行,能够准确评估电力设备的绝缘状态,对电网暂态过电压进行实时测量或监测是非常重要的。
传感耦合方式分类
电网暂态过电压引起的问题,对电力设备是否造成致命性的危害,在理论上没有完全分析清楚。事故分析的暂态过电压波形记录缺乏,对事故原因的分析一直以来依靠经验,均造成事故分析不彻底、不明确。暂态过电压测量或监测装置,其能够准确地获取过电压幅值及其变化过程,对故障发生、发展的整个过程进行记录,通过波形分析就能确定事故是由于过电压幅值或陡度超过了设备绝缘的承受能力,还是由于设备本身绝缘水平的降低所造成,或其它原因。
但在工程中,暂态过电压测量系统和装置被没有被强制要求,使得实测的现场暂态过电压数据非常缺乏。鉴于实测暂态过电压数据的重要性,其测量或监测技术的推广应用尤为重要。暂态过电压测量或监测就是通过过电压分压器(传感器),基于数据采集技术,实时测量电网系统的电压扰动,记录和保存暂态过电压发生时各相电压的幅值、波形及各种参数。并具有信号处理、参数提取、应用与分析(报警、历史数据查询和统计等)功能。但过电压分压器的工作方式即电压波形信号的传感耦合是影响测量系统安全性、可靠性、准确性的核心,也是基础。
传感耦合技术分析
信号可以选择阶跃波、方波、标准操作冲击和雷电冲击波、以及陡化和振荡调制下的高频脉冲源,对比和分析“传感器”输出和标准分压器输出波形在时域和频域下的差异,从而判定该传感耦合方式是否满足暂态过电压波形的工程测试要求。
在变电站母线或出线加装专用的
高压分压器采集过电压信号(电容式、阻容式分压器的分压原理,这里不予阐述),该方式波形记录准确性高,频率响应可满足暂态过电压波形,但对分压器的可靠性要求其能够长期挂网稳定运行,因此一般仅用于10~110 kV 电压等级电网。对于220 kV 及以上高电压等级电网的暂态过电压测量,在线监测使用外接分压器作为专用分压器的案例较少;但输变电设备的启动调试录波,可求助于移动式的外接分压器。开关分和分操作时测量的线路末端过电压波形,暂态过程较为强烈,产生的过电压倍数较高并出现了开关燃弧现象。
常见分类
①空载长线
电容效应(费兰梯效应)。在工频电源作用下,由于远距离空载线路电容效应的积累,使沿线电压分布不等,末端电压最高。
②不对称短路接地。三相输电线路a相短路接地故障时,b、c相上的电压会升高。
③甩负荷过电压,输电线路因发生故障而被迫突然甩掉负荷时,由于电源电动势尚未及时自动调节而引起的过电压。
操作过电压
操作过电压是由于进行断路器操作或发生突然短路而引起的衰减较快持续时间较短的过电压,常见的有:
②切除空载线路过电压。
③切断空载变压器过电压。
④弧光接地过电压。
谐振过电压
谐振过电压是电力系统中
电感、电容等储能元件在某些接线方式下与电源
频率发生谐振所造成的过电压。
一般按起因分为:
存在的问题
我国已经在暂态过电压传感耦合技术设计、试验与应用开展了全面的研究,初步取得了丰硕的成果,一些技术和理念已经成功用于解决工程实际难题,为暂态过电压传感耦合技术的进一步研究打下了深厚的基础。但是,由于暂态过电压传感耦合技术涉及电气、传感器、数据采集、信号处理、计算机等多个学科及其交叉,研究工作点多面广,存在一定的复杂性,相关技术和应用仍然存在较多的问题。
发展趋势展望
随着电网向着高电压、高智能、高可靠性的方向发展,对暂态过电压测量装置性能的要求越来越高,波形传感耦合技术的发展面临诸多挑战。由于该技术包含的内容很多,涉及面广,这里不再一一例举,其中如下方面值得重点研究:
1)暂态过电压传感耦合方式接入电网系统的规范标准及安全性评估。随着相关技术的发展,基于“路”和“场”以及两者相结合的各种暂态过电压测量技术层出不穷,设备运维管理人员面对测量或监测系统的选择以及安装时,没有相关依据可循。这使得暂态过电压传感耦合方式接入电网系统的规范标准及安全性评估的研究需要开展,以便于后期暂态过电压测量或监测系统的推广和应用。
2)具有高品质暂态响应的CVT研制。随着电网向着超高压、特高压的方向发展,CVT作为
电压互感器用于计量、保护测控的主要设备,其位置不可替代。研制具有优良暂态响应特性的CVT,使其能够测量工频、谐波直至暂态过电压波形,将会进一步增加该设备在电网中的重要性。
3)基于EVT 的暂态过电压传感耦合新技术开发。电网朝着智能化方向发展,220kV及以下新建变电站开始大量使用EVT。EVT 的一次
电压传感器主要由电阻分压、电容分压、光电转换3种类型。其中,基于电阻分压式EVT(R-EVT)改装后,用于测量投切电容器
操作过电压的在线监测系统已经在电网中投运。由此,借助于其它分压方式或新型的EVT、或对EVT 进行改装,使其在满足测量工频电压的同时具备测量暂态过电压波形的性能,也是今后可以开展的研究方向。
4)非接触式的暂态过电压传感耦合方式的深化研究和应用。研究资料表明,该方式具有的特点:a)与电网设备没有直接联系,运行安全可靠;b)设备简单,成本低廉;c)母线或输电线路下方均可安装。因此,可以在研究基础上,进一步对如何提高波形保真度、以及其它形式的非接触式暂态电压传感耦合方式等展开深化研究,并积累实测数据,针对实际工程中发现的问题进行改进,可以为后期推广创造良好条件。
5)基于高电压等级设备测量的电流、电压信号反演获得暂态过电压的研究和应用。无论是借助于PT 二次测量、CVT二次测量,或者
变压器套管末屏接地电流以及避雷器动作电流,涉及的设备电压等级最高为110 kV。由于该传感耦合方式一般不会影响、改变运行设备的电气性能和运行安全,也不会降低系统的可靠性和存在潜在隐患,使得设备管理运维人员容易接受其作为暂态过电压波形的测量方式。据此,对220 kV及以上高电压等级设备测量得到的电流、电压信号进行反演,从而获得暂态过电压波形的研究和应用亟需开展,以便在推广应用时具有较长的挂网运行经验。
6)基于避雷器改造的暂态过电压波形传感耦合方式研究。由于避雷器设备分布于电网各个电压等级的变电场所和输电网络,如果能够借助于避雷器,对其进行改造,在不改变其原有功能特性的基础上设计出可以用于测量暂态过电压波形的传感耦合方式,势必可以得到大力推广。无间隙MOA非线性电阻阀片柱模型可以用它的电容及并联的非线性电阻来表示,如果以该MOA原有的阀片柱作为
电压传感器的高压臂,选用同批次的氧化锌阀片作为低压臂,是否可以实现暂态过电压的分压转换?该工作需要经过避雷器的电场计算、加装均压环并设计产品后进行试验验证。
7)特高压、多落点交直流混联电网系统的暂态扰动特性及其过电压波形的测量和分析。国家电网积极推进发展特高压电网,构建坚强、智能的能源互联网,已建成多条特高压交直流输电线路,在送端和受端均形成了密集接入的区域,我国已经成为世界上电压等级最高、交直流混联电网规模最大的国家。然而,随着国网公司以特高压电网为主网架的“九交十三直”大规模直流输电工程的建设投运,特高压、多落点交直流混联系统的逐步形成,电网特性发生了变化,交直流系统的协调运行成为关注的焦点,一旦发生相互干扰,可能导致系统停运,大量潮流的损失,无论是对受端电网,还是送端电网,可能带来大量甩机组,或甩负荷的风险,甚至导致大面积停电的巨大风险。从调度运行提供的数据看,多个超特高压直流输电工程投运以来,已多次遭受交流电网故障及未明原因的干扰,导致直流闭锁、输送功率突然损失,对电网稳定运行产生不利影响。原因可能是在某些运行方式变化过程中产生了电压的暂态过程,对这些暂态过程对直流系统的影响尚缺乏研究。同时,对于已经投运的特高压交直流混联受端电网,往往分布在本地电源缺失的地区,其电网呈现出“强馈入、弱开机”的特征,受到交流扰动时反应剧烈。因此,期望通过上述的总结和分析,能够为该复杂工况下提供暂态过电压波形的传感耦合方式、以及通过实际测量波形去研究交直流系统的实际暂态扰动特性和作用机制,从而找到影响直流输电换相失败的原因。