斯托克斯定理(
英文:Stokes' theorem)是微分几何中关于
微分形式的积分的一个命题,它一般化了
向量微积分的几个定理,以斯托克斯爵士命名。
设S 是 分片光滑的有向曲面,S 的边界为有向闭曲线Γ ,即,且Γ 的正向与 S 的侧符合右手规则: 函数P(x,y,z)、Q(x,y,z)、R(x,y,z)都是定义在“曲面 S连同其边界 Γ”上且都具有一阶连续
偏导数的函数,则有
它将ℝ3 空间上“
向量场的
旋度的曲面积分”跟“向量场在曲面边界上的线积分”之间建立联系,这是一般的斯托克斯公式(在 n三维;2 时)的特例,我们只需用ℝ3 空间上的度量把向量场看作等价的1形式。该定理的第一个已知的书面形式由
威廉·汤姆森(开尔文勋爵)给出,出现在他给斯托克斯的信中。
也是一般的斯托克斯公式的一个特例,如果我们把向量场看成是等价的n-1形式,可以通过和体积形式的内积实现。
微积分基本定理和
格林定理也是一般性斯托克斯定理的特例。使用微分形式的一般化斯托克斯定理当然比其特例更强,虽然后者更直观而且经常被使用它的科学工作者或工程师认为更方便。
令 M 为一个可定向分段光滑 n 维
流形,令 ω 为 M 上的 n−1 阶 C 类紧支撑
微分形式。如果 ∂M 表示 M 的边界,并以 M 的方向诱导的方向为边界的方向,则
这里 dω 是 ω 的
外微分, 只用流形的结构定义。这个公式被称为一般的斯托克斯公式(generalized Stokes' formula),它被认为是
微积分基本定理、
格林公式、高-奥公式、ℝ3 上的斯托克斯公式的推广;后者实际上是前者的简单推论。