投影算子
数学术语
投影算子是在赋范
线性
空间X上具有
幂等
性的
有界线性算子
。设P是X上的有界线性算子,如果P2=P,则称P为投影算子。
定义
设P为
希尔伯特空间
中的
自伴算子
,若P是
幂等
的(P2=P),则P为投影算子。
简介
投影算子是在赋范线性空间X上具有
幂等
性的
有界线性算子
。
设P是X上的有界线性算子,如果P2=P,则称P为投影算子。
当P是投影算子时,I-P也是投影算子,且X=PX+(I-P)X。
幂等
在数学里,幂等有两种主要的定义。
在某二元运算下,幂等元素是指被自己重复运算(或对于函数是为复合)的结果等于它自己的元素。例如,乘法下唯一两个幂等实数为0和1。
某一元运算为幂等的时,其作用在任一元素两次后会和其作用一次的结果相同。例如,高斯符号便是幂等的。一元运算的定义是二元运算定义的特例。
有界线性算子
有界线性算子
是泛函分析中一种重要的算子。
设是从
线性赋范空间
到的
线性算子
。 如果当存在且有限,则称是有界线性算子,也就是说将中的每个有界集
映射
为中的有界集。此处|表示范数,表示中定义的范数,表示中定义的
范数
。
参考资料
最新修订时间:2022-08-25 17:11
条目作者
小编
资深百科编辑
目录
概述
定义
简介
幂等
参考资料
Copyright©2024
闽ICP备2024072939号-1