对于天体力学中不能直接求解的运动方程,除了用级数作为近似解外,
庞加莱在十九世纪末开辟了一条新的途径──寻找运动方程的周期解。这种解的特点是:经过一定的时间(周期)后,天体的坐标和速度都严格地回复到原来的数值。
周期解理论是天体力学中最活跃的研究领域之一。对于维数不高的动力学体系(如平面圆型限制性三体问题)来说,周期解是决定相空间(坐标和速度分量组成的空间)的“枢纽”轨道;周期解的存在同共振有密切联系(见共振理论);某些简单的周期解可以作为中间轨道,并以此为基础讨论摄动;人造天体出现以后,需要设计能够周期性地接近地球和其他天体的轨道,这就给周期解的研究工作带来新动力。