年轮气候学是根椐树木年轮的变化推论过去气候的学科。在四季变化明显的地区,树木一般每年形成一个生长轮,即年轮。年轮的宽窄同当年降水或温度关系十分密切,故可用以恢复古气候,是一种定年最方便,参数最客观的代用资料。
形成及变化
“年轮系指茎的横切面上所见一年内木材和树皮的生长层而言。”这是
1957年国际木材解剖学家协会所发表的《木材解剖学名词术语》中,有关“年轮“这个名词的定义。至于年轮是怎样形成的,这首先要从
维管形成层的结构及其活动规律谈起。维管形成层(或称形成层)是由原形成层发展而来的一种具有无限分生能力的
次生分生组织。在植物的一生中,它不断向外产生
次生韧皮部,向内产生
次生木质部。形成层由
纺锤状原始细胞和射线原始细胞所组成。轴向伸长的纺锤状原始细胞,两端呈楔形,在横切面上多成长方形,切向宽大于径向宽,细胞的长度比宽度大数倍。
细胞生长
由纺锤状原始细胞衍生出次生木质部和次生韧皮部的轴向系统。射线原始
细胞的
体积较小,几乎成等径或稍长。这类原始细胞衍生次生木质部与韧皮部的径向系统。
上述两类原始细胞虽然在外部形态上差别较大,但其超微结构基本相同。在形成层的活动期间,原始细胞中间具1—2个大液泡,周围的细胞质中富含
核糖体与
高尔基体,以及发育良好的
内质网等。休眠期的形成层原始细胞中,液泡变小,数目增多,高尔基体小泡及内质网也相应减少,细胞中还出现了较多的
蛋白质体和油滴,这些储藏物质往往在翌年生长季开始时被利用。
木本植物根或茎的径向增粗,主要是通过纺锤状原始细胞平周分裂的结果,这种有丝分裂的进程较慢,如在松柏类植物中,每分裂一次需4一6天(茎的
顶端分生组织细胞只需8—18小时)。当一个纺锤状原始细胞平周分裂成两个子细胞时,其中一个衍生为木质部母细胞(或称木质部原始细胞),或者衍生成韧皮部母细胞(或称韧皮部原始细胞)。另一个仍保持纺锤状原始细胞分生状态。在形成层活跃期间,有的细胞已经分裂或正在分裂,有的尚处于分生组织状态,这样形成层就成了一个相当宽而尚未分化的细胞区。在这个区域中,有一层真正的形成层原始细胞,同时还包括未分化的衍生细胞。由于从细胞形态上难以区分上述各类细胞,为方便起见,人们将这些细胞统称为形成层区(或形成层带)。
形成层区的变化
从形成层区的切向切面看,形成层原始
细胞排列方式大体分为两种:一是在
椴属(Tilia)和刺槐属(Robinia)等植物的形成层中,纺锤状原始细胞几乎排列在同一水平层,称为叠生形成层。一是纺锤状原始细胞的侵入生长,使纵向伸长的细胞末端相互交错,而不排列在同一水平层上,故称为非叠生形成层,如栗属(Castanea)和胡桃属(Juglans)等植物。
纺锤状原始细胞为适应茎或根的径向增粗,本身也进行细胞分裂,以增加原始细胞的数目,这种分裂特称为增殖分裂。在不同的植物中,增殖分裂的方式也不一样,如在具叠生形成层的
植物中,多以
径向垂周分裂为主,而在非叠生形成层的松柏类和某些双子叶植物中,常见为假横向分裂,或称斜向垂周分裂。从纺锤状原始细胞经分裂形成射线原始细胞,这是一种普遍现象。射线原始细胞本身也进行横向或垂周分裂,最后形成单列或多列射线。
变化规律
在温带地区生长的木本植物,随着
季节性的气候变化,也明显地反映在形成层的周期活动上。冬季形成层原始细胞停止分化,翌年春季又开始恢复活动,到了夏秋逐渐减弱,而后停止活动。如此周而复始,年复一年。当形成层原始细胞恢复活动时,可分为两个阶段:(1)形成层原始细胞径向伸展,径向壁变得很薄,这时易受霜冻的伤害。(2)原始细胞开始分裂,这一阶段往往比前阶段晚1至数星期。生长在北京地区的树种,形成层开始活动的时间,大体在每年四月的上、中旬。在大多数树种中,当形成层开始分化时,韧皮部分子的分化往往先于木质部达一个月或更长,或两者几乎同时分化。形成层分化停止的时间,在不同生境和树种中均有很大变化,生长在北温带地区的树木,多集中在九月份。春季,形成层恢复活动时,纺锤状原始细胞迅速向内分裂的分化成大量的木质部分子,此时分化的管胞或导管分子的直径较大,数目多,壁较薄,木纤维数量较少,因此材质显得比较疏松,这部分木材称为早材(或叫春材)。到了同年夏秋季节,形成层的活动逐渐减弱,原始细胞平周分裂的速度也相应的减慢,分化的细胞直径较小,数量少,而木纤维的数量相应增多,这部分的
材质比较致密,称晚材(或称夏材)。在双子叶植物的环孔材(如栎树和白蜡树)中,早材部分的导管分子直径明显增大,而晚材的导管分子相当小。散孔材与裸子植物木材中,由早材至晚材的变化,一般是逐渐进行的,即没有显著界线。不过在上一个生长季的晚材与下一个生长季的早材之间却存在着明显的界线。
运用
运用年轮的研究成果开始于本世纪初,这位学者是道格拉斯,他1867年出生于美国佛蒙特,后来到
亚利桑那州建立起一个新气象站。
1901年他开始到
弗拉格斯塔夫附近一些伐木营地,考察那里新伐树木的年轮型式,想找出证据说明这些年轮中记录了以11年为周期的太阳黑子活动。他没有立即找到证据,但他注意到,一个地区和另一个地区的年轮型式似乎一无二致。例如,一个伐木营地新伐的树木,里面是两道薄薄的年轮,外面是三道厚厚的年轮,其他营地新伐的树木也是这样。人们可以推断,这种型式表明,两年是坏天气,三年是好天气。道格拉斯注意到,他发现的这种型式的年轮似乎在亚利桑那州北部到处皆有。
在本世纪的头20年中,道格拉斯继续研究年轮的型式。事实上,通过识别年轮来测定古老建筑的年代是道格拉斯的创举。美国西南部印第安人村庄的废墟,长期以来引起考古学家的兴趣。那些村庄原由工匠精心建造,其中有许多房屋显然已经使用了好多世纪,可是后来不知何故,那些村庄都废弃了。据估计,那些村庄早在公元前2000年就已存在。道格拉斯从
1916年起开始考察
印第安村庄废墟残留的
木料,研究其年轮以确定其年化。到1929年,他终于制成一个“浮动”年表。
有文明传统的地方,在使用年轮方面可能出人意料,令人惊讶。比如说,在中世纪俄国的诺夫哥罗德,街上泥泞不堪,市民就往路面铺原木。一层陷进泥里就再铺一层,有28条街已经堆满了一层又一层的原木,这些原木的年代从公元953年起一直到1462年,真是年轮博览会。又如,像伦勃朗和鲁本斯等艺术大师的油画,分析其橡木油画板上的年轮型式就可知作画的年代。
发展历史
国外研究
20世纪初,
美国A.E.道格拉斯最早论证了树木年轮宽度变化与降水量之间的关系,并在30年代创建了专门研究树木年轮的实验室。此后,年轮气候学家对形成年轮的生理过程与气候的关系作了详细研究,并在样本树种的选择和年轮序列的统计分析技术方面取得进展,逐步建立起年轮气候学的基本原理和分析方法。
选取样本时,应选择生长条件最受某个气候
要素(
温度或
降水)限制的树木。例如,生长在高纬度或高寒山区森林上界处的树木,由于受到热量不足的限制,常能很好地反映出冷暖的变化;在干旱、半干旱地区,由森林向草原或荒漠过渡的林缘树木,由于受到雨量不足的限制,常能反映干湿的变化。在实际应用中常在同一地点选取多个重复的样本,互相对比,以准确定年和消除非气候因子影响。此外,对年轮宽度变化还要进行树木随年龄变化的生长量等方面的订正,并用已有的各项资料校验。经过严格校验后的年轮序列,可以反映大尺度的气候变迁。例如,美国V.C.拉马奇在美国
加利福尼亚州惠特尼山亮叶松分布上界附近所取的年轮序列与欧洲(
英国中部)气温变化趋势是一致的。70年代初,美国H.C.弗里茨根据年轮宽度变化与气压距平场的关系,绘制出1700年以来北半球西半部每十
年平均的环流图。
国内研究
中国自20世纪30年代开始研究年轮气候学。研究表明,在华北和西北广大地区,用年轮分析了解历史时期的气候变迁,尤其用以反映降水量的变化,很有价值。70年代后期,北方的许多省(区)和青藏高原等地都广泛开展了这项工作。各地得到许多反映温度或降水的长达数百年的序列,为研究
历史时期气候变迁的史实提供更多的依据。
木匠从久远的时代起,就知道树干里面有年轮,有了年轮,
木材上才出现了纹理。据人们所知,亚里士多德的同事就曾提到过年轮,不过到达·芬奇才第一次提出年轮是每年增加一圈的。今天已经众所周知:春回大地,万象更新,紧挨着树皮里面的细胞开始分裂;分裂后的细胞大而壁厚,颜色鲜嫩,科学家称之为早期木;以后细胞生长减慢,壁更厚,体积缩小,颜色变深,这被称为后期木,树干里的深色年轮就是由后期木形成的。在这以后,树又进入冬季休眠时期,周而复始,循环不已。这样,许多种树的主干里便生成一圈又一圈深浅相间的环,每一环就是一年增长的部分。这种年轮在针叶树中最显著,在大多数温带落叶树中不明显,而许多热带树中则根本没有。
树是活档案,树干里的年轮就是记录。它不仅说明树木本身的
年龄,还能说明每年的降水量和温度变化。年轮上可能还记录了森林大火、早期
霜冻以及从周围环境中吸取的化学成分。因此,只要人们知道了如何揭示树的秘密,它就会向人们诉说从它出世起,周围发生的大量事情。树可以告诉人们有文字记载以前发生过的事情,还可以告诉人们有关未来的事情。树中关于气象的记录可以帮助人们了解促成
气象的那些自然力量,而这反过来又可帮助人们预测未来。
动向
世界上许多年轮气候学家正进一步探讨树木生长受
气候影响的机制和在更大范围内开展年轮研究的可能性。为从树木年轮中获得更多的气候信息,已尝试对年轮的
密度和同位素含量变化进行分析,并已获得较好效果。显然,它们与年轮宽度分析一样,将成为年轮气候学中重要的
研究途径。
发展前景
人类生产和生活各个方面与气候关系密切。合理地利用气候资源,有效地防御气候灾害已成为气候学研究越来越重要的问题。未来的气候变化受到人们极大的关注。自
世界气象组织 (WMO)
1979年制定了世界气候计划(WCP)以来,各国学者对气候变化和异常及其对人类的影响,进行了更为广泛深入的研究。新技术和新方法的普遍应用,使气候学研究的范围大为扩大,气候学正向综合研究气候系统的方向发展。
学科关系
气候学同各门基础科学、
技术科学及至社会科学间有着广泛的联系。无论是从理论还是从方法看,气候学和
数学、物理学、化学、
天文学、地学等基本学科以及
大气科学各分支都有密切的关系。气候监测更需要应用各种技术科学。所以,气候学是同其他多种学科广泛联系的一门学科。
由于气候涉及到人类生活和生产的各个方面,从1972年以来,在国际上关于环境、粮食、
水资源、沙漠化等一系列重要会议上,气候问题都占有显著
地位。1979年世界气候大会提出了
世界气候计划,使气候问题成为国际协作的重大课题,气候学成了日益活跃的
学科,气候学的含义也正在不断发展,包括大气圈、水圈、冰雪圈、
岩石圈和
生物圈在内的气候系统的概念也正在形成。虽然,当前气候学仍以大气为其主要研究对象,但其内容正在不断地丰富和充实,从大气科学的一个分支向着综合性的气候
系统的学科发展。