对称性
数学用语
数学上,对称性由群论来表述。对称群为连续群和分立群的情形分别被称为连续对称性(continuous symmetry)和分立对称性(discrete symmetry)。德国数学家威尔(Hermann Weyl)是把这套数学方法运用于物理学中并意识到规范对称重要性的第一人。
对称操作
当分子有对称中心时,从分子中任意一原子至对称中心连一直线,将次线延长,必可在和对称中心等距离的另一侧找到另一相同原子,即每一点都关于中心对称。依据对称中心进行的对称操作为反演操作,是按照对称中心反演,记为i;n为偶数时in=E,n为奇数时in=i
镜面对称
镜面是平分分子的平面,在分子中除位于经面上的原子外,其他成对地排在镜面两侧,它们通过反映操作可以复原。反映操作是每一点都关于镜面对称,记为σ;n为偶数时σn=E,n为奇数时σn=σ。和主轴垂直的镜面以σh表示;通过主轴的镜面以σv表示;通过主轴,平分副轴夹角的镜面以σd 表示。
反轴
反轴In的基本操作为绕轴转360°/n,接着按轴上的中心点进行反演,它是C1n和i相继进行的联合操作:I1n=iC1n; 绕In轴转360°/n,接着按中心反演。
映轴
映轴Sn的基本操作为绕轴转360°/n,接着按垂直于轴的平面进行反映,是C1n和σ相继进行的联合操作: S1n=σC1n;绕Sn轴转360°/n,接着按垂直于轴的平面反映。
参考资料
最新修订时间:2023-06-29 17:43
目录
概述
对称操作
镜面对称
反轴
参考资料