孟德尔豌豆杂交实验是孟德尔操作的试验,试验内容是把一种开紫花的豌豆种和一种开白花的豌豆种结合在一起,第一次结出来的豌豆开紫花,第二次紫白相间,第三次全白。对此孟德尔没有充分的理由作出解释。
研究者
孟德尔(Gregor Johann Mendel)(1822年7月20日-1884年1月6日)奥地利人,是“现代遗传学之父(father of modern genetics)”,是遗传学的奠基人。1865年发现
遗传定律。1822年孟德尔出生在一个贫寒的农民家里,父母都是园艺家。他被誉为现代遗传学之父。孟德尔通过豌豆实验,发现了遗传规律、遗传因子的
分离规律及遗传因子的
自由组合规律。
选材优势
1.豌豆是严格的
自花传粉,
闭花授粉的植物,因此在
自然状态下获得的后代均为纯种(
纯合子)杂交实验结果可靠。
2.豌豆的不同性状之间差异明显、易于区别,如高茎、矮茎,而不存在介于两者之间的第三高度。
3.孟德尔还发现,豌豆的这些性状能够稳定地遗传给后代。用这些易于区分且稳定的性状进行豌豆品种间的杂交,实验结果容易观察和分析。
4.因为豌豆还具有花朵大,
生长周期短和产生子粒较多等特点,便于进行异花传粉时去雄和
人工授粉、便于缩短实验周期使实验更易进行和便于
统计分析使实验结果更可靠。
实验推理
遗传因子
后来,孟德尔从豌豆杂交实验结果,得出了相对性状中存在着
显性和隐性的原理。虽然还有不少例外,但它仍然是一个原理。孟德尔根据自己在实验中发现的原理,进一步做了推想。他认为决定
豌豆花(如图《豌豆花》所示)色的物质一定是存在于细胞里的
颗粒性的
遗传单位,也就是具有稳定性的遗传因子。他设想在身体细胞里,遗传因子是成双存在的;在
生殖细胞里,遗传因子是成单存在的。例如,豌豆的
花粉是一种雄性生殖细胞,遗传因子是成单存在的。在豌豆的根、茎、叶等身体细胞里,遗传因子是成双存在的。这就是说,孟德尔认为可以观察到的花的颜色是由有关的遗传因子决定的。
如果用D代表红花的遗传因子,它是显性;用d代表白花的遗传因子,它是隐性。这样,豌豆花色的杂交实验,就可以这样解释:
红花×白花
(纯种) DD dd(身体细胞,遗传因子成双存在)
↓ ↓(杂交)
\u3000/
Dd(杂交) 自交 Dd
DD Dd Dd dd
红花因为杂种的遗传基础物质是由D和d组成的,因此,它的后代(
子二代)就可能出现白花(dd)了。
这就是说,隐性的遗传因子在从
亲代到后代的传递中,它可以不表现。但是它是稳定的,并没有消失。
遗传单位,叫做基因。研究基因的科学就是遗传学。基因学说就是现代遗传学的中心理论。很清楚,基因概念是孟德尔在推想中提出来的,虽然当时他并没有提出“基因”这个科学名词。
孟德尔认为遗传单位(基因)具有高度的稳定性。一个
显性基因和它相对的
隐性基因在一起的时候,彼此都具有稳定性,不会改变性质。例如,豌豆的红花基因R和白花基因r在一起,彼此不会因为相对基因在一起而发生变化,在一代一代的传递中,D和d都能长期保持自己的
颜色特征。孟德尔的结论正好跟长期流传的
融合遗传理论相对立。
对比
融合遗传理论是怎么回事儿呢?它的基本论点是:遗传因子或
遗传物质相遇的时候,彼此会相互混合,相互融化,而成为
中间类型的东西。根据融合理论来推理,甲和乙杂交,就会产生出混血儿,甲的遗传因子和乙的遗传因子,都变成了中间类型的东西。好比两种液体混合在一起似的,亲代的遗传因子都因为融合而消失了。根据融合理论来推理,豌豆的红花遗传因子D跟白花遗传因子d在一起的时候也就会融合成为新的东西,D和d都不再存在了。显然,融合理论是错误的,因为它没有
科学事实的支持。它只是一种推测和猜想,不能解释所有的表现不同的
遗传现象。然而中间类型是有的。这是相对的
基因相互作用而产生的性状,基因本身并没有改变。例如,红花的
紫茉莉和白花的紫茉莉杂交,子一代的花是粉红色的。可是子二代,这些粉红色茉莉的后代,却有三种不同的性状:粉红花、红花和白花。
从这里也可以看到,现象和本质虽然有着密切的关系,但是它们之间是有区别的,不能简单地把现象和本质等同起来。豌豆是
自花传粉植物,而且还是
闭花受粉,也是豌豆花在未开放时,就已经完成了受粉,避免了外来花粉的干扰。所以豌豆在自然状态下一般都是纯种,用豌豆做
人工杂交实验,结果既可靠,又容易分析。
分离规律
豌豆具有一些稳定的、容易区分的性状,这很符合孟德尔的试验要求。所谓性状,即指生物体的形态、结构和生理、生化等特性的总称。在他的杂交试验中,孟德尔全神贯注地研究了7对
相对性状的
遗传规律。所谓相对性状,即指
同种生物同一性状的不同表现类型,如豌豆花色有
红花与白花之分,种子形状有圆粒与皱粒之分等等。为了方便和有利于
分析研究起见,他首先只针对一对相对性状的传递情况进行研究,然后再观察多对相对性状在一起的传递情况。这种分析方法是孟德尔获得成功的一个重要原因。
孟德尔的论文的标题是《植物杂交试验》,因此他所从事试验的方法,主要是“杂交试验法”。他用纯种的高茎豌豆与矮茎豌豆作亲本(亲本以P表示),在它们的不同
植株间进行
异花传粉。高茎豌豆与矮茎豌豆异花传粉的
示意图。结果发现,无论是以高茎作
母本,矮茎作父本,还是以高茎作父本,矮茎作母本(即无论是正交还是反交),它们杂交得到的第一代植株(简称“子一代”,以F1表示)都表现为高茎。也就是说,就这一对相对性状而言,F1植株的性状只能表现出双亲中的一个亲本的性状——高茎,而另一亲本的性状——矮茎,则在F1中完全没有得到表现。
又如,纯种的
红花豌豆和
白花豌豆进行杂交试验时,无论是正交还是反交,F1植株全都是红花豌豆。正因为如此,孟德尔就把在这一对性状中,F1能够表现出来的性状,如高茎、红花,叫做显性性状,而把F1未能表现出来的性状,如矮茎、白花,叫做隐性性状。孟德尔在豌豆的其他5对相对性状的杂交试验中,都得到了同样的试验结果,即都有易于区别的显性性状和隐性性状。
在上述的孟德尔杂交试验中,由于在杂种F1时只表现出相对性状中的一个性状——显性性状,那么,相对性状中的另一个性状——隐性性状,是不是就此消失了呢?能否表现出来呢?带着这样的疑问,孟德尔继续着自己的杂交试验工作。 孟德尔让上述F1的高茎豌豆
自花授粉,然后把所结出的F2豌豆种子于次年再播种下去,得到杂种F2的豌豆植株,结果出现了两种类型:一种是高茎的豌豆(显性性状),一种是矮茎的豌豆(隐性性状),即:一对相对性状的两种不同表现形式——高茎和矮茎性状都表现出来了。孟德尔的疑问解除了,并把这种现象称为
分离现象。不仅如此,孟德尔还从F2的高、矮茎豌豆的数字统计中发现:在1064株豌豆中,高茎的有787株,矮茎的有277株,两者数目之比,近似于3∶1。 孟德尔以同样的试验方法,又进行了红花豌豆的F1自花授粉。在杂种F2的豌豆植株中,同样也出现了两种类型:一种是红花豌豆(显性性状),另一种是白花豌豆(隐性性状)。对此进行数字统计结果表明,在929株豌豆中,红花豌豆有705株,白花豌豆有224株,二者之比同样接近于3∶1。 孟德尔还分别对其他5对相对性状作了同样的杂交试验,其结果也都是如此。 我们概括上述孟德尔的杂交试验结果,至少有三点值得注意:
(1)F1的全部植株,都只表现某一亲本的性状(显性性状),而另一亲本的性状,则被暂时遮盖而未表现(隐性性状)。
(2)在F2里,杂交亲本的相对性状——显性性状和隐性性状又都表现出来了,这就是性状分离现象。由此可见,隐性性状在F1里并没有消失,只是暂时被遮盖而未能得以表现罢了。
(3)在F2的群体中,具有显性性状的植株数与具有隐性性状的植株数,常常表现出一定的分离比,其比值近似于3∶1。
3.对性状分离现象的解释 孟德尔对上述7个豌豆杂交试验结果中所反映出来的、值得注意的三个有规律的现象感到吃惊。事实上,他已认识到,这绝对不是某种偶然的巧合,而是一种遗传上的普遍规律,但对于3∶1的
性状分离比,他仍感到困惑不解。
经过一番创造性思维后,终于茅塞顿开,提出了
遗传因子的分离假说,其主要内容可归纳为:
(1)生物性状的遗传由遗传因子决定(遗传因子后来被称为基因)。
(2)遗传因子在
体细胞内成对存在,其中一个成员来自父本,另一个成员来自母本,二者分别由精
卵细胞带入。在形成
配子时,成对的遗传因子又彼此分离,并且各自进入到一个配子中。这样,在每一个配子中,就只含有成对遗传因子中的一个成员,这个成员也许来自父本,也许来自母本。
(3)在杂种F1的体细胞中,两个遗传因子的成员不同,它们之间是处在各自独立、互不干涉的状态之中,但二者对性状发育所起的作用却表现出明显的差异,即一方对另一方起了决定性的作用,因而有显性因子和隐性因子之分,随之而来的也就有了显性性状与隐性性状之分。
(4)杂种F1所产生的不同类型的配子,其数目相等,而雌
雄配子的结合又是随机的,即各种不同类型的
雌配子与雄配子的结合机会均等。
为了更好地证明分离现象,我们用
大写字母D代表决定高茎豌豆的显性遗传因子,用
小写字母d代表矮茎豌豆的隐性遗传因子。在生物的
体细胞内,遗传因子是成对存在的,因此,在纯种高茎豌豆的体细胞内含有一对决定高茎性状的显性遗传因子DD,在纯种矮茎豌豆的体细胞内含有一对决定矮茎性状的隐性遗传因子dd。杂交产生的F1的体细胞中,D和d结合成Dd,由于D(高茎)对d(矮茎)是显性,故F1植株全部为高茎豌豆。当F1进行
减数分裂时,其成对的遗传因子D和d又得彼此分离,最终产生了两种不同类型的配子。一种是含有遗传因子D的配子,另一种是含有遗传因子d的配子,而且两种配子在数量上相等,各占1/2。因此,上述两种雌雄配子的结合便产生了三种组合:DD、Dd和dd,它们之间的比接近于1∶2∶1,而在
性状表现上则接近于3(高)∶1(矮)。 因此,孟德尔的遗传因子假说,使得豌豆杂交试验所得到的相似结果有了科学的、圆满的解释。
基因型与表现型我们已经看到,在上述一对遗传因子的
遗传分析中,遗传下来的和最终表现出来的并不完全是一回事,如当遗传结构为DD型时,其表现出来的性状是高茎豌豆,而遗传结构为Dd型时,其表现出来的也是高茎豌豆。像这样,生物个体所表现出来的外形特征和生理特性叫做
表现型,如高茎与矮茎,红花与白花;而生物个体或其某一性状的遗传基础,则被称为基因型,如高茎豌豆的基因型有DD和Dd两种,而矮茎豌豆的基因型只有dd一种。由相同遗传因子的
配子结合成的
合子发育而成的个体叫做
纯合体,如DD和dd的植株;凡是由不同遗传因子的配子结合成的合子发育而成的个体则称为
杂合体,如Dd。
基因型是生物个体内部的
遗传物质结构,因此,生物个体的基因型在很大程度上决定了生物个体的表现型。例如,含有显性遗传因子D的豌豆植株(DD和Dd)都表现为高茎,无显性遗传因子的豌豆植株(dd)都表现为矮茎。由此可见,基因型是
性状表现的内在因素,而表现型则是基因型的表现形式。 由以上分析我们还可知道,表现型相同,基因型却并不一定相同。例如,DD和Dd的表现型都是高茎,但其基因型并不相同,并且它们的下一代有差别:DD的下一代都是高茎的,而Dd的下一代则有
分离现象——既有高茎,也有矮茎。
4.分离规律的验证 前面讲到孟德尔对分离现象的解释,仅仅建立在一种假说基础之上,他本人也十分清楚这一点。假说毕竟只是假说,不能用来代替真理,要使这个假说上升为科学真理,单凭其能清楚地解释他所得到的试验结果,那是远远不够的,还必须用实验的方法进行验证这一假说。下面介绍孟德尔设计的第一种验证方法,也是他用得最多的测交法。 测交就是让杂种子一代与隐性类型相交,用来测定F1的基因型。按照孟德尔对分离现象的解释,杂种子一代F1(Dd)一定会产生带有遗传因子D和d的两种
配子,并且两者的数目相等;而隐性类型(dd)只能产生一种带有隐性遗传因子d的配子,这种配子不会遮盖F1中遗传因子的作用。所以,测交产生的后代应当一半是高茎(Dd)的,一半是矮茎(dd)的,即两种性状之比为1∶1。 孟德尔用子一代高茎豌豆(Dd)与矮茎豌豆(dd)相交,得到的后代共64株,其中高茎的30株,矮茎的34株,即性状分离比接近1∶1,实验结果符合预先设想。对其他几对相对性状的测交试验,也无一例外地得到了近似于1∶1的分离比。 孟德尔的测交结果,雄辩地证明了他自己提出的遗传因子分离假说是正确的,是完全建立在科学的基础上的。
5.分离规律的实质 孟德尔提出的遗传因子的分离假说,用他自己所设计的测交等一系列试验,已经得到了充分的验证,亦被后人无数次的试验所证实,现已被世人所公认,并被尊称为孟德尔的分离规律。那么,孟德尔分离规律的实质是什么呢? 这可以用一句话来概括,那就是:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。
实验结果
在生物的
体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成
配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
(2)体细胞中遗传因子是成对存在的。
(3)生物体在形成
生殖细胞—— 配子时,成对的遗传因子彼此分离,分别进入不同的配子中。
(4)受精时,雌雄配子的结合是随机的。
控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
分子机制
实验成果
孟德尔研究过的第一个性状是豌豆成熟种子的圆满与皱缩。这两种表型的遗传是由一对
等位基因R、r决定的,符合
分离定律。在孟德尔时代,人们对基因的认识仅此而已。20世纪末,现代遗传学对基因本质的研究已从
DNA分子水平上阐明了皱缩基因的结构和功能。
20世纪80年代的研究发现,豌豆的成熟种子野生型RR与突变型rr由于淀粉代谢的差异带来了游离
蔗糖的积累、
渗透压、细胞体积等一系列变化。rr突变型种子中
淀粉粒小而有深沟,
淀粉酶含量低,
淀粉含量少,
支链淀粉与
直链淀粉的比例低,游离蔗糖含量高,有甜味,渗透压高,
含水量低,细胞体积小。此后,有相当多的研究证实,rr种子的
胚胎发育过程中,淀粉合成的原初代谢受到损伤。1990年M.K.Bhattacharyya等人指出,在胚胎发育过程中,r基因座的损伤是和一种淀粉分支酶
同工酶I(isoform I of starch-branching enzyme,SBEI)活性完全丧失有关。这种同工酶在RR胚胎的早期发育中活性很高,而在rr胚胎中无活性。他们一开始认为可能是编码SBEI的
基因失活或是一个调节SBEI
基因表达的基因受损伤所造成的。Bhattacharyya进一步克隆了SBEI基因,研究了它的分子组成,并且确定了其与r
基因座的关系,结果发现:在rr突变型中的SBEI
基因片段是4.1kb,比野生型RR的相应片段长0.8kb。在rr中有额外的0.8kb片段插入到SBEI基因的近3'端Xbal与
HindⅢ的
酶切位点之间的一个
外显子中。该
插入序列有12bp的
反向重复,在它的末端侧翼有来自SBEI基因的8bp的正向重复。该
插入片段在结构上与玉米、
欧芹等植物的转座子有明显的
相似性。有理由认为,rr突变型SBEI基因中的0.8bp插入片段是一种类
转座子(transposon-like)。通过对SBEI基因与r座位的
连锁分析以及其他方面的考证,研究者们确认,SBEI基因位于r基因座,已克隆的这个SBEI基因就是孟德尔所研究过的那个“皱皮基因”。
A.M.Smith等人(1990年)也证明rr突变型不仅在
胚胎中不存在SBEI,而且在叶片中也不存在,叶片中淀粉分支酶的活性只有RR野生型叶片中
酶活性的1/7;在饱和光照条件下,由于淀粉分支上的非还原性末端数目减少,致使
淀粉合成酶的一个底物浓度降低,导致rr突变型叶片中淀粉合成速度降低。在RR野生型的叶片中由于有SBEI的存在,淀粉合成正常。
综上所述,孟德尔当时研究过的r基因引起豌豆成熟种子皱缩的分子机制是:在R基因座的一个SBEI基因的3.3kbDNA分子中,由一个0.8kb的类转座子片段插入而引起编码淀粉分支酶基因突变所带来的一系列淀粉代谢异常所造成:rr基因型胚胎发育早期,由于800bp的类转座子插入到编码SBEI基因的一个外显子中,造成
插入突变,导致淀粉分支酶同工酶I失活,继而引起淀粉分支酶失活,淀粉合成的底物量下降,导致淀粉合成量降低,使直链淀粉向
支链淀粉的转变受阻,游离蔗糖的积累增加,引起渗透压增高,水分含量降低,细胞体积变小,最终使rr基因型豌豆种子呈
皱缩状。
新发现
1866年,孟德尔将研究结果整理成论文发表,遗憾的是,这一重要成果却没有引起人们的重视,一直沉寂了30多年。1900年,三位科学家分别重新发现了孟德尔的工作。他们做了许多与孟德尔实验相似的观察,并且认识到孟德尔提出的理论的重要意义。1909年,
丹麦生物学家约翰逊将遗传因子更改为基因,并提出
表现性和基因型的概念。