可度量化空间(metrizable space)是一类特殊的
拓扑空间,设X是拓扑空间,若在
集合X上存在一个度量d,使得X上由d诱导的拓扑和X上原来的
拓扑一致,则称X为可度量化空间。
亚历山德罗夫(Александров,П.С.)和乌雷松(Урысон,П.С.)早于1923年用开覆盖列上的一个特殊条件提供了一个答案,大约在10年后,穆尔(Moore,R.L.)稍微改变了他们的条件,琼斯(Jones,F.B.)于1937年称这样的空间为
穆尔空间。度量空间是穆尔空间,反之未必成立,于是,关于可度量化定理的研究转变为精确地确定什么样的穆尔空间是可度量化的。
最有名的猜测是每个正规穆尔空间是可度量化的,最近50年里对这个猜测的研究在一般拓扑学的发展中起着重要的作用。琼斯于1937年指出,若2 <2,则每个可分正规穆尔空间是可度量化的。宾(Bing,R.H.)和永见(Nagami,K.)指出每个仿紧穆尔空间是可度量化的。西尔弗(Silver,J.H.)于1970年用科恩模型指出正规穆尔空间猜测本身不能用现有的集论公理证明,周浩旋于1979年在附加集论假设MA+CH下,证明了存在不可度量化的穆尔空间.由此可见,可度量化问题的研究与
公理集合论有密切的联系。
因此B={{x}∣x∈X}是
集合X上的离散度量 诱导的拓扑 的基。由于集合X的每一单点集都是这一拓扑 的开集,所以 是集合X上的离散拓扑。
事实上,若平凡拓扑空间X={a,b}是可度量化空间,则存在集合X上的度量ρ,使得由其诱导的集合X上的拓扑是
平凡拓扑{ ,x}.因为ρ(a,b)>0,取