前缀表达式
不含括号的算术表达式
前缀表达式是一种没有括号的算术表达式,与中缀表达式不同的是,其将运算符写在前面,操作数写在后面。为纪念其发明者波兰数学家Jan Lukasiewicz,前缀表达式也称为“波兰式”。例如,- 1 + 2 3,它等价于1-(2+3)。
基本释义
前缀表达式就是前序表达式,是一种是由波兰数学家扬·武卡谢维奇1920年引入的数学表达式方式。
例如,- 1 + 2 3,它等价于1-(2+3)。
注意事项
后缀表达式源自于前缀表达式,为了区分前缀和后缀表示,通常将后缀表示称为逆波兰表示;因前缀表示并不常用,所以有时也将后缀表示称为波兰表示。
运算优势
前缀表达式是一种十分有用的表达式,将中缀表达式转换为前缀表达式后,就可以只依靠出栈、入栈两种简单操作完全解决中缀表达式的全部运算。
例如,(a+b)*(c+d)转换为*,+,a,b,+,c,d。
后面的前缀表达式的运算方式为:如果当前字符(或字符串)为数字或变量,则压入栈内;如果是运算符,则将栈顶两个元素弹出栈外并作相应运算,再将结果压入栈内。当前缀表达式扫描结束时,栈里的就是中缀表达式运算的最终结果。对比中缀运算的步骤,不难发现前缀运算在计算机上的优势。
求值方法
对前缀表达式求值,要从右至左扫描表达式,首先从右边第一个字符开始判断,若当前字符是数字则一直到数字串的末尾再记录下来,若为运算符,则将右边离得最近的两个“数字串”作相应运算,然后以此作为一个新的“数字串”并记录下来;扫描到表达式最左端时扫描结束,最后运算的值即为表达式的值。
例如:对前缀表达式“- 1 + 2 3”求值,扫描到3时,记录下这个数字串,扫描到2时,记录下这个数字串,当扫描到+时,将+右移做相邻两数字串的运算符,记为2+3,结果为5,记录下5这个新数字串,然后继续向左扫描,扫描到1时,记录下这个数字串,扫描到-时,将-右移做相邻两数字串的运算符,记为1-5,结果为-4,此时关于这个表达式的全部运算已完成,故表达式的值为-4。
表达对照
中缀表达式转化为前缀表达式的例子:
a+b ---> +,a,b
a+(b-c) ---> +,a,-,b,c
a+(b-c)*d ---> +,a,*,-,b,c,d
a+1+3 ---> +,+,a,1,3
转换算法
(1) 首先构造一个运算符栈(也可放置括号),运算符(以括号为分界点)在栈内遵循越往栈顶优先级不降低的原则进行排列。
(2)从右至左扫描中缀表达式,从右边第一个字符开始判断:
如果当前字符是数字,则分析到数字串的结尾并将数字串直接输出。
如果是运算符,则比较优先级。如果当前运算符的优先级大于等于栈顶运算符的优先级(当栈顶是括号时,直接入栈),则将运算符直接入栈;否则将栈顶运算符出栈并输出,直到当前运算符的优先级大于等于栈顶运算符的优先级(当栈顶是括号时,直接入栈),再将当前运算符入栈。
如果是括号,则根据括号的方向进行处理。如果是右的括号,则直接入栈;否则,遇左括号前将所有的运算符全部出栈并输出,遇右括号后将左、向右的两括号一起出栈(并不输出)。
(3) 重复上述操作(2)直至扫描结束,将栈内剩余运算符全部出栈并输出,再逆缀输出字符串中缀表达式也就转换为前缀表达式了。
实例分析
中缀表达式“1+((2+3)*4)-5”转换为前缀表达式。
符号处理
运算符的具体处理方法如下:
) :直接入栈
( :遇)前,将运算符全部出栈并输出;遇)后,将两括号一起删除①
+、-:1
*、/、%:2
^:3
编程转换
C语言代码
公式转换
pascal代码
参考资料
最新修订时间:2024-08-10 19:40
目录
概述
基本释义
注意事项
运算优势
参考资料