分治算法的基本思想是将一个规模为N的
问题分解为K个规模较小的子问题,这些子问题
相互独立且与
原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成
程序算法,简单问题可用
二分法完成。
基本思想
当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。这就是
分治策略的基本思想。
二分法
利用分治策略求解时,所需时间取决于分解后子问题的个数、子问题的规模大小等因素,而
二分法,由于其划分的简单和均匀的特点,是经常采用的一种有效的方法,例如二分法检索。
解题步骤
(1)分解,将要解决的问题划分成若干规模较小的同类问题;
(2)求解,当子问题划分得足够小时,用较简单的方法解决;
(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。
应用实例
下面通过实例加以说明:
找出伪币
给你一个装有16个硬币的袋子。16个硬币中有一个是伪造的,并且那个伪造的硬币比真的硬币要轻一些。你的任务是找出这个伪造的硬币。为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。比较硬币1与硬币2的重量。假如硬币1比硬币2轻,则硬币1是伪造的;假如硬币2比硬币1轻,则硬币2是伪造的。这样就完成了任务。假如两硬币重量相等,则比较硬币3和硬币4。同样,假如有一个硬币轻一些,则寻找
伪币的任务完成。假如两硬币重量相等,则继续比较硬币5和硬币6。按照这种方式,可以最多通过8次比较来判断伪币的存在并找出这一伪币。
另外一种方法就是利用
分而治之方法。假如把16硬币的例子看成一个大的问题。第一步,把这一问题分成两个小问题。随机选择8个硬币作为第一组称为A组,剩下的8个硬币作为
第二组称为B组。这样,就把16个硬币的问题分成两个8硬币的问题来解决。第二步,判断A和B组中是否有伪币。可以利用仪器来比较A组硬币和B组硬币的重量。假如两组硬币重量相等,则可以判断伪币不存在。假如两组硬币重量不相等,则存在伪币,并且可以判断它位于较轻的那一组硬币中。最后,在第三步中,用第二步的结果得出原先16个
硬币问题的答案。若仅仅判断硬币是否存在,则第三步非常简单。无论A组还是B组中有伪币,都可以推断这16个硬币中存在伪币。因此,仅仅通过一次重量的比较,就可以判断伪币是否存在。
假设需要识别出这一伪币。把两个或三个硬币的情况作为不可再分的小问题。注意如果只有一个硬币,那么不能判断出它是否就是伪币。在一个小问题中,通过将一个硬币分别与其他两个硬币比较,最多比较两次就可以找到伪币。这样,16硬币的问题就被分为两个8硬币(A组和B组)的问题。通过比较这两组硬币的重量,可以判断伪币是否存在。如果没有伪币,则算法终止。否则,继续划分这两组硬币来寻找伪币。假设B是轻的那一组,因此再把它分成两组,每组有4个硬币。称其中一组为B1,另一组为B2。比较这两组,肯定有一组轻一些。如果B1轻,则伪币在B1中,再将B1又分成两组,每组有两个硬币,称其中一组为B1a,另一组为B1b。比较这两组,可以得到一个较轻的组。由于这个组只有两个硬币,因此不必再细分。比较组中两个硬币的重量,可以立即知道哪一个硬币轻一些。较轻的硬币就是所要找的伪币。
求最值
在n个元素中找出
最大元素和
最小元素。我们可以把这n个元素放在一个数组中,用
直接比较法求出。算法如下:
上面这个算法需比较2(n-1)次。能否找到更好的算法呢?我们用
分治策略来讨论。
把n个元素分成两组:
A1={A[1],...,A[int(n/2)]}和A2={A[INT(N/2)+1],...,A[N]}
分别求这两组的
最大值和
最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。直至子集中元素至多两个元素为止。
例如有下面一组元素:-13,13,9,-5,7,23,0,15。用分治策略比较的算法如下:
棋盘覆盖
题目:在一个(2^k)*(2^k)个方格组成的棋盘上,有一个特殊方格与其他方格不同,称为特殊方格,称这样的棋盘为一个特殊棋盘。我们要求对棋盘的其余部分用L型方块填满(注:L型方块由3个
单元格组成。即围棋中比较忌讳的
愚形三角,方向随意),且任何两个L型方块不能重叠覆盖。L型方块的形态如下:
题目的解法使用分治法,
即子问题和整体问题具有相同的形式。我们对棋盘做一个分割,我们可以看到棋盘被切成4个一样大小的子棋盘,特殊方块必定位于四个子棋盘中的一个。这样对于每个子棋盘又各有一个“特殊方块”,我们对每个子棋盘继续这样分割,直到子棋盘的大小为1为止。
用到的L型方块需要(4^k-1)/3 个,算法的时间是O(4^k),是渐进最优解法。
本题目的C语言的完整代码如下(
TC2.0下调试),
运行时,先输入k的大小,(1<=k<=6),然后分别输入特殊方格所在的位置(x,y), 0<=x,y<=(2^k-1)。
应用场景
1、原问题可以分解为多个子问题
这些子问题与原问题相比,只是问题的规模有所降低,其结构和求解方法与原问题相同或相似。
由于递归都必须有一个终止条件,因此,当分解后的子问题规模足够小时,应能够直接求解。
3、在求解并得到各个子问题的解后
应能够采用某种方式、方法合并或构造出原问题的解。
不难发现,在
分治策略中,由于子问题与原问题在结构和解法上的
相似性,用分治方法解决的问题,大都采用了递归的形式。在各种排序方法中,如
归并排序、
堆排序、
快速排序等,都存在有分治的思想。