分岔理论或分歧理论(bifurcation theory)是
数学中研究一群曲线在本质或是
拓扑结构上的改变。一群曲线可能是
向量场内的
积分曲线,也可能是一群类似
微分方程的解。
简介
研究分岔现象的特性和产生机理的数学理论。对于某些完全确定的非线性系统,当系统的某一参数μ连续变化到某个临界值μc时,系统的全局性性态(定性性质、拓扑性质等)会发生突然变化。μc称为参数μ 的分岔值或分枝值。这种现象称为分岔现象,是一种有重要意义的非线性现象。分岔现象不仅是数学现象,它在自然界中也有种种表现。早期,除了数学理论的研究外,通过数字计算机进行的数值实验是研究非线性微分方程中的分岔现象的主要手段。20世纪80年代前后,关于分岔的真正的实验观测也已在迅速增加。
分岔(bifurcation)常出现在
动态系统的数学研究中,是指系统参数(分岔参数)小而连续的变化,结果造成系统本质或是
拓扑结构的突然改变。分岔会出现在连续系统(以常微分方程、时滞微分方程或偏微分方程来描述)或是离散系统中 (以映射来描述)。
bifurcation一词最早是由儒勒·昂利·庞加莱在1885年的论文中提出,这也是第一篇提到类似特性的数学论文,庞加莱后来也为许多不同的驻点命名而且分类。
研究
分岔现象的研究引起了众多领域的科学家的兴趣。理论和实验的结果都表明,分岔现象是出现在许多学科中的普遍物理现象。早在19世纪,C.雅可比、H.庞加莱等人就已引进“分岔”这一术语。迄今已出现了许多关于分岔理论的著作,其中除大量的数学文献外,在弹性结构、流体力学、
天体物理学、化学反应、
非线性振动、生物发育、
基本粒子理论等领域中有关分岔现象的文献数量也很多。在系统与控制理论中,分岔理论可以用来探讨非线性系统中分岔现象的产生和消失、分岔性失稳的出现和控制以及分岔性失稳系统的调节和控制等问题。分岔理论也为协同学、
耗散结构理论、数学生态学提供了有用的工具。20世纪70年代后期关于混沌现象和
奇异吸引子的研究结果表明,连续发生的分岔现象往往是出现混沌现象的先兆。混沌现象是比分岔更为复杂的一类非线性现象。它不是简单的无序和混乱状态,而是没有明显的周期和对称、却具备丰富的内部层次的有序状态。分岔理论对许多实际系统的研究有重要意义。
从数学角度来说,分岔理论主要研究
非线性方程(微分方程、积分方程、差分方程等)中的参数对解的定性性质的影响。其中,参数与解的稳定性、周期性、平衡位置等基本性质的关系是研究的重点。早在1885年,庞加莱就提出了一套平面动力学系统的平衡状态与参数的关系的理论。他研究了参数通过分岔值时系统轨线的拓扑结构的变化状况,建立了相应的判别准则。20世纪50年代,苏联学者A.A.安德罗诺夫推广了庞加莱的结果,并在
非线性振动理论中加以应用。后来,又有人研究高维
欧几里德空间或
巴拿赫空间中的分岔理论,但结果还不多。
分岔类型
分岔可以分为以下的二种类型:
局部分岔
局部分岔是指因参数变化,因此改变平衡点(或是不动点)稳定性的情形,对应平衡点特征值的实部由正变负或是由负变正,在离散系统中(会由映射描述),是指不动点其弗洛凯乘子的模为1。这二种情形下,平衡点在分岔时都是非双曲线的。
局部分岔有一个特性,只要控制分岔参数,可以将系统相图中的拓朴变化限制在分岔点附近任意小的区域中,因此称为局部分岔。
若在位置的
雅可比矩阵有实部为0的
特征值,表示在此点有局部分岔。若特征值为0,表示此分岔为稳态的分岔,但若特征值为虚数,表示是霍普夫分岔。
若是离散系统
若在的矩阵有模数为1的特征值,表示有局部分岔。若特征值等于1,分岔可能是鞍结分岔、跨临界分岔或叉式分岔,若特征值等于-1,表示是周期加倍分岔,否则则为霍普夫分岔。
局部分岔的例子有:
全域分岔
全域分岔是指较大的不变集(如周期性轨迹)和平衡点重叠。全域分岔也会改变相图上的拓朴,而且其变化不会像局部分岔一様限制在一个小区域,因此称为全域分岔。
全域分岔的例子有:
全域分岔有时会和像
奇异吸引子之间更复杂的结构有关,如一种称为危机的现象就是指当动态系统的参数变化时,
奇异吸引子突然出现或是突然消失。
分岔的余维数
分岔的
余维数是指动态系统中需变动几个参数,才会使分岔现象出现。鞍结分岔及霍普夫分岔是常见的局部分岔中,实际余维数为1的二个分岔(其他分岔的余维数都大于1)。不过
跨临界分岔及叉式分岔的正规式可以写成只有一个参数的形式,因此也可以视为余维数为1的分岔。
Bogdanov-Takens 分岔是一个有较多研究,余维数为2分岔的一个例子。
应用
分岔理论已用在连结量子系统及经典力学系统的动态中,可以用在原子系统、分子系统及
谐振隧穿二极管。分岔理论已用到激光动力学的研究中,也用在许多在实验上难以处理的理论例子中,例如kicked top及耦合量子阱。将量子系统及古典力学运动方程中分岔相连结的主要原因是在分岔时,古典力学轨道的signature会变大,正如Martin Gutzwiller在有关量子混沌中的研究所提出的一样。许多分岔都研究来连结古典力学和量子力学,像是鞍结分岔、霍普夫分岔、umbilic分岔、周期加倍分岔、重新连接分叉(reconnection bifurcation)、切线分叉(tangent bifurcation)及尖分叉(cusp bifurcation)。