奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。奇异吸引子仅仅是一个抽象
数学概念,还没有发展出完善的
理论模型。科学家对于奇异吸引子的研究才刚刚起步,而研究奇异吸引子有助于科学家了解混沌系统中存在形态的规律问题。
奇怪吸引子又称为混沌吸引子,它具有复杂的拉伸、扭曲的结构.奇怪吸引子是系统总体稳定性和局部不稳定性共同作用的产物,它具有
自相似性,具有分形结构.
从整体上讲系统是稳定的即吸引子外的一切运动最后都要收敛到吸引子上.但就局部来说吸引子内的运动又是不稳定的即相邻运动轨道要相互排斥而按指数型分离.
奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和李雅普诺夫不稳定性)有着密切关系。它具有不同属性的内外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子内的运动都互相排斥,对应于“不稳定”方向。
奇异吸引子的一个著名例子是洛伦茨吸引子,它是在研究天气预报中
大气对流问题的洛伦茨模型中得到的。洛伦茨吸引子由“浑然一体”的左右两簇构成,各自围绕一个
不动点。当运动轨道在一个簇中由外向内绕到中心附近后,就随机地跳到另一个簇的外缘继续向内绕,然后在达到中心附近后再突然跳回到原来的那一个簇的外缘,如此构成随机性的来回盘旋。