光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在
现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
专业概述
光纤即为光导纤维的简称。光纤通信是以
光波作为
信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、
分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。
光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式,被称之为“有线”光通信。当今,光纤以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。
1966年英籍华人高锟(Charles Kao)发表论文提出用石英制作玻璃丝(光纤),其损耗可达20dB/km,可实现大容量的光纤通信。当时,世界上只有少数人相信,如英国的标准电信实验室(STL)、美国的Corning玻璃公司,Bell实验室等领导。2009年高锟因发明光纤获得诺贝尔奖。1970年,Corning公司研制出损失低达20dB/km,长约30 m的石英光纤。1976年Bell实验室在华盛顿亚特兰大建立了一条实验线路,传输速率仅45Mb/s,只能传输数百路电话,而用中同轴电缆可传输1800路电话。因为当时尚无通信用的激光器,而是用发光二极管(LED)做光纤通信的光源,所以速率很低。1984年左右,通信用的半导体激光器研制成功,光纤通信的速率达到144Mb/s,可传输1920路电话。1992年一根光纤传输速率达到2.5Gb/s,相当3万余路电话。1996年,各种波长的激光器研制成功,可实现多波长多通道的光纤通信,即所谓“波分复用”(WDM)技术,也就是在1根光纤内,传输多个不同波长的光信号。于是光纤通信的传输容量倍增。在2000年,利用WDM技术,一根光纤光纤传输速率达到640Gb/s。有人对高锟1976年发明了光纤,而2010年才获得诺贝尔奖有很大的疑问。事实上,从以上光纤发展史可以看出,尽管光纤的容量很大,没有高速度的激光器和微电子仍不能发挥光纤超大容量的作用。电子器件的速率才达到吉比特/秒量级,各种波长的高速激光器的出现使光纤传输达到太比特/秒量级(1Tb/s=1000 Gb/s),人们才认识到“光纤的发明引发了通信技术的一场革命!”
优点和不足
(1)
通信容量大、传输距离远;一根光纤的潜在
带宽可达20THz。采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。400Gbit/s系统已经投入商业使用。光纤的损耗极低,在光
波长为1.55μm附近,
石英光纤损耗可低于0.2dB/km,这比任何传输
媒质的损耗都低。因此,无中继传输距离可达几十、甚至上百公里。
(2)信号干扰小、保密性能好;
(3)抗
电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。
(4)光纤尺寸小、重量轻,便于铺设和运输;
(5)材料来源丰富,环境保护好,有利于节约有色金属铜。
(6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。
(8)质地脆,机械强度差。
(9)光纤的切断和接续需要一定的工具、设备和技术。
(11)光纤光缆的弯曲半径不能过小(>20cm)
(12)有供电困难问题。
利用光波在光导纤维中传输信息的通信方式.由于
激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信.
原理与应用
光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到
激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.
随着信息技术传输速度日益更新,光纤技术已得到广泛的重视和应用。在多微机电梯系统中,光纤的应用充分满足了大量的数据通信正确、可靠、高速传输和处理的要求。光纤技术在电梯上的应用,大大提高了整个控制系统的反应速度,使电梯系统的并联群控性能有了明显提高。
电梯上所使用的光纤通信装置主要由光源、光电接收器和光纤组成。
光源
微机控制系统输出的信号为电信号,而光纤系统传输的是光信号,因此,为了把微机系统产生的电信号在光纤中传输,首先要把电信号转换为光信号。光源就是这样一种电光转换器件。
光源首先将电信号转换成光信号,再向光纤发送光信号。在光纤系统中,光源具有非常重要的地位。可作为光纤光源的有白炽灯、激光器和半导体光源等。半导体光源是利用半导体的 PN结将电能转换成光能的,常用的半导体光源有半导体发光二极管(LED)和激光二极管(LD) 。
半导体光源因其体积小、重量轻、结构简单、使用方便、与光纤易于相容等优点,在光纤传输系统中得到了广泛的应用。
光电接收器
在光纤中传输的光信号在被微机系统所接收前,首先要还原成相应的电信号。这种转换是通过光接收器来实现的。光接收器的作用就是将由光纤传送过来的光信号转换成电信号,再把该电信号交由控制系统进行处理。 光接收器是根据光电效应的原理,用光照射半导体的 PN结,半导体的 PN结吸收光能后将产生载流子,因此产生 PN结的光电效应,从而将光信号转换成电信号。应用于光纤系统中的半导体接收器主要有半导体光电二极管,光电三极管、光电倍增管和光电池等。光电三极管不仅能把入射光信号变成电信号,而且能把电信号放大,从而能够与控制系统接口电路很好地匹配,所以光电三极管的应用最为广泛。
光纤
光纤是光信号的传输通道,是光纤通信的关键材料。
光纤由纤芯、包层、涂敷层及外套组成,是一个多层介质结构的对称圆柱体。纤芯的主体是二氧化硅,里面掺有微量的其它材料,用以提高材料的光折射率。纤芯外面有包层,包层与纤芯有不同的光折射率, 纤芯的光折射率较高, 用以保证光信号主要在纤芯里进行传输。 包层外面是一层涂料,主要用来增加光纤的机械强度,以使光纤不受外来损害。光纤的最外层是外套,也是起保护作用的。
光纤的两个主要特征是衰减和色散。损耗是光信号在单位长度上的衰减或色散,用db/km表示,该参数关系到光信号的传输距离,损耗越大,传输距离越短。多微机电梯控制系统一般传输距离较短,因此为降低成本,大多选用塑料光纤。光纤的色散主要关系到脉冲展宽。 在三菱电梯控制系统中, 光纤通信主要用于群控与单梯间的数据传送及两台并联的单梯之间的数据传送。三菱电梯所用的光纤装置主要由光源、光接收器和光纤组成,其中光源和光接收器被封装在光纤接插件的定插头内,光纤与动插头相连。
光波分复用技术
WDM(Wavelength Division Multiplexing)技术是指使用多束激光在同一条光纤上同时传输多个不同波长的光波技术。它能够极大地提高光纤传输系统的传输容量。1.6 Tbit/s的WDM系统已经大规模商用化。为了进一步提高光纤传输的容量,1995年后DWDM(Dense Wavelength Division Multiplexing)基础成为了国际上主要的研究对象,朗讯贝尔实验室认为商用的DWDM系统容量最高能够达到100 Tbit/s。以10 Gbit/s为基础的DWDM已在我国多个运营商中逐渐成为核心网主流。DWDM系统除了波长数和传输容量不断增加外,光传输距离也从600 km增加到了2000 km以上。除此之外,粗波分复用CWDM(Coarse Wavelength Division Multiplexing)也在城域光传送网扩展中应运而生,具有超大容量、短距离传输和低成本等优势。研究人员还发现,将多个光时分复用OTDM信号进行波分复用能够大大提高传输容量。只要适当结合就能够实现Tbit/s以上的传输,因此,它也成为未来光纤通信的发展方向。实验室中大多数超过3 Tbit/s的传输实验都是采取这种方式实现的。
光孤子通信技术
光是一种特殊的ps数量级上的超短光脉冲,它经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信的,在零误码的情况下信息传递可达到万里。众多试验表明,它可以用于海底光缆通信等,而且适合与WDM系统结合构成超高速大容量的光通信,当单信道速率达到40 Gbit/s以上时,光孤子通信的优势得以充分体现。
光纤接入技术
工作过程
发送:CPU 通过专用 IC芯片将并行数据串行化,并根据通信格式插入相应位码(起始、停止、校验位等) ,由输出端 TXD将信号送入光纤接插件(即定插头) ,再由光纤接插件中的光源进行电—光转换,转换后的光信号通过光纤动插头向光纤发送光信号,光信号在光纤中向前传播。
接收:来自光纤的光信号经光纤接插件的动插头,向定插头的接收器发送,接收器将接受到的光信号进行光—电还原,从而得到相应的电信号,该电 信号送入到专用的 IC 芯片的RXD输入端,经专用 IC芯片将串行数据改为并行数据后,再向 CPU传送。
应用领域
光纤通信的应用领域是很广泛的,主要用于市话中继线,光纤通信的优点在这里可以充分发挥,逐步取代电缆,得到广泛应用。还用于长途干线通信过去主要靠电缆、
微波、卫星通信,现以逐步使用光纤通信并形成了占全球优势的比特传输方法;用于全球
通信网、各国的公共电信网(如中国的国家一级干线、各省二级干线和县以下的支线);它还用于高质量彩色的电视传输、工业生产现场监视和调度、交通监视控制指挥、城镇有线电视网、共用
天线(CATV)系统,用于
光纤局域网和其他如在飞机内、飞船内、舰艇内、矿井下、电力部门、军事及有腐蚀和有辐射等中使用。
光纤传输系统主要由:光发送机、光接收机、光缆传输线路、光中继器和各种无源光器件构成。要实现通信,基带信号还必须经过电端
机对信号进行处理后送到光纤传输系统完成通信过程。
它适合于光纤
模拟通信系统中,而且也适用于光纤
数字通信系统和
数据通信系统。在光纤模拟通信系统中,电信号处理是指对基带信号进行放大、预调制等处理,而电信号反处理则是发端处理的逆过程,即解调、放大等处理。在光纤
数字通信系统中,电信号处理是指对基带信号进行放大、取样、量化,即
脉冲编码调制(PCM )和线路码型编码处理等,而电信号反处理也是发端的逆过程。对数据光纤通信,电信号处理主要包括对信号进行放大,和
数字通信系统不同的是它不需要码型变换。
专业设置
培养目标
本专业培养能从事光纤网络工程的规划建设、
SDH系统的调测维护、电信核心网络和接入网络的工程维护等工作的应用型人才。具有较强的电缆、
光缆设计与施工、线路规划概预算的能力以及在光纤通信设备安装、调试与维护及其相关领域从业的综合职业能力。
主要课程
就业方向
从事光纤通信
线路工程和接入网的设计、施工、概预算编制和
工程监理;光纤通信设备的安装、调试和操作维护;通信网络规划设计、施工、监理等工作。
发展
光纤通信是现代通信网的主要传输手段,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆
通信线路,而致力于发展光纤通信.
中国光纤通信已进入实用阶段.
光纤通信的诞生和发展是
电信史上的一次重要革命与
卫星通信、
移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。
光纤通信就是利用光波作为
载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。
通信的发展过程是以不断提高
载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波 ,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。
光纤通信与以往的电气通信相比,主要区别在于有很多优点:它传输频带宽、通信容量大;传输损耗低、中继距离长;线径细、重量轻,原料为石英,节省金属材料,有利于资源合理使用;
绝缘、抗电磁干扰性能强;还具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点,可在
特殊环境或军事上使用。
趋势
5G网络对光纤光缆需求激增
5G网络的全面建设为光纤市场发展迎来新机遇:5G网络需要大量基站,因为其使用的高频信号无法覆盖很远的距离;同时,光纤是提供必要的高数据传输速率的唯一材料。因此,5G网络对光纤的需求将激增。