二元线性方程组,别名叫“二元一次方程组”,是指由两个方程两个未知量构成的
线性方程组。二元线性方程组实质上就是二元一次方程组。因为二元一次方程的图象是一条直线,所以有时就将
二元一次方程称之为
线性方程,将二元一次方程组称之为线性方程组。
定义
二元线性方程组实质上就是二元一次方程组。因为二元一次方程的图象是一条直线,所以有时就将二元一次方程称之为线性方程,将二元一次方程组称之为线性方程组。
线性方程组的一般形式为:
A1x+B1y+C1=0
A2x+B2y+C2=0.
性质
方程组
(1)二元一次方程组:由两个二元一次方程所组成的一组方程,叫做二元一次方程组.
(2)二元一次方程组的解:二元一次方程组中两个方程的公共解,叫做二元一次方程组的解.
对二元一次方程组的理解应注意:
①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个
方程合在一起.
②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解。
概念
方程两边都是整式,含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程。
你能区分这些方程吗?5x+3y=75(二元一次方程);3x+1=8x(一元一次方程);2y+y=2(x-y=9(二元一次方程)。
对二元一次方程概念的理解应注意以下几点:
②在方程中“元”是指未知数,二元是指方程中含有两个未知数;
③未知数的项的次数都是1,实际上是指方程中最高次项的次数为1,在此可与
多项式的次数进行比较理解,切不可理解为两个未知数的次数都是1。
(2)二元一次方程的解
使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一个解。
对二元一次方程的解的理解应注意以下几点:
①一般地,一个二元一次方程的解有无数个,且每一个解都是指一对数值,而不是指单独的一个未知数的值;
②二元一次方程的一个解是指使方程左右两边相等的一对未知数的值;反过来,如果一组数值能使二元一次方程左右两边相等,那么这一组数值就是方程的解;
③在求二元一次方程的解时,通常的做法是用一个未知数把另一个未知数表示出来,然后给定这个未知数一个值,相应地得到另一个未知数的值,这样可求得二元一次方程的一个解。
应用
消元法
“消元”是解二元一次方程的基本思路。所谓“消元”就是减少
未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。如:5x+6y=7 2x+3y=4,变为5x+6y=7 4x+6y=8。
例子
x-y=3 ①
3x-8y=4②
由①得x=y+3③
③代入②得
3(y+3)-8y=4
y=1
所以x=4
则:这个二元一次方程组的解
x=4
y=1
其他方法
(一)加减-代入混合使用的方法。
例1.13x+14y=41 (1)
14x+13y=40 (2)
解:(2)-(1)得
x-y=-1
x=y-1 (3)
把(3)代入(1)得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入(3)得
x=1
所以:x=1,y=2
最后 x=1 , y=2, 解出来
特点:两方程相加减,得到单个x或单个y,适用接下来的代入消元。
(二)代入法
是二元一次方程的另一种方法,就是说把一个方程带入另一个方程中。
如:
x+y=590
y+20=90%x
带入后就是:
x+90%x-20=590
例2,(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式(x+5,y-4),换元后可简化方程。
(三)另类换元
例3,x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可写为:5t+24t=29
29t=29
t=1
所以x=1,y=4。
换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是
等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化
无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
3(x+y)=4(x-y)
解:设x+y为a,x-y为b
原=a/2-b/3=6①
3a=4b②
①×6 得3a-2b=36③
把②代入③ 得2b=36 b=18
把b=18代入②得a=24
所以x+y=24④
x-y=18⑤
④-⑤得 2y=6 y=3
把y=3代入④得 x=21
x=21
y=3
整体代入
比如2x+5y=15①
85-7y=2x②
解:把②代入①得
85-7y+5y=15
-2y=-70
y=35
把y=35代入②得
x=-80
x=-80
是方程组的解
y=35