流体在管道内流动时,在某一断面处的各质点的流速是不相同的。靠近管壁的流速为零,而越靠近管中心流速越大,由于各层流的流速不等,各点层流之间产生相对运动,在相邻的流层之间产生了阻碍相对运动的内摩擦阻力,称粘滞力。液体具有粘滞力的性质称为粘滞性。
牛顿
内摩擦定律或牛顿剪切定律对流体的黏性作了理论描述,即流体层之间单位面积的
内摩擦力或
剪切应力与
速度梯度或
剪切速率成正比。
在我们的周围,存在着各种各样的摩擦现象。我们能走路、坐定和工作,这都离不开摩擦。摩擦是普遍存在的。潺潺的流水里,甚至连能自由流动的空气里也存在着摩擦。人们把流体体
内摩擦也称作黏滞性。物理学上用黏滞系数h(单位为泊)来表示流体黏滞性的大小。
葡萄糖浆的黏滞系数η=6.6x10^11泊,较大,水的黏滞系数η=8.01x10^-3泊,较小。实际上所有流体都有不同程度的黏滞性。而且对于大多数液体,η随温度上升而下降。什么流体的黏滞系数最小?1957年12月1日,美国加利福利亚技术学院宣布:在
液氦Ⅱ里,黏滞系数小得测量不到。它是没有黏滞系数的
理想流体。
流体的动力黏度主要与流体的种类及温度有关。在通常压强范围内,压强对流体黏性的影响很小,可以忽略不计。温度对流体的黏性影响很大,而且温度对液体和气体黏性的影响完全相反,液体黏性随温度升高而减小,气体黏性随温度升高而增大。这是因为液体的分子间距小,分子间的吸引力是构成液体黏性的主要因素,温度升高,分子间的吸引力减小,液体的黏性降低。构成气体黏性的主要因素是气体分子作不规则热运动时气体分子间的动量交换。温度升高,气体分子的热运动越剧烈,分子间的动量交换加剧,使气体黏性增强。
黏度是流体黏性的度量,受流体温度和压力的影响。但压力的影响很小,通常只需考虑温度的影响。温度对液体和气体黏性的影响规律截然不同。温度升高时,液体的黏性降低。这是因为液体的黏性主要是由液体分子之间的内聚力引起的,温度升高,内聚力减弱,故黏性降低。温度升高时,气体的黏性增加。因为造成气体黏性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以黏性就越大。流体的黏度一殿无法直接测量,往往是先测量与其有关的物理量,再通过相关方程进行计算得到。人们对黏度的测量早己开始,并且发展了许多相当成熟的方法,如传统的毛细管法、管流法、落球法、旋转法及振动法等。