高斯噪声是指它的
概率密度函数服从
高斯分布(即
正态分布)的一类噪声。常见的高斯噪声包括起伏噪声、宇宙噪声、热噪声和散粒噪声等等。除常用抑制噪声的方法外,对高斯噪声的抑制方法常常采用数理统计方法。
噪声是电路或系统中不含信息量的电压或电流。在工业与自然界中,存在着各种干扰源(噪声源),如大功率
电力电子器件的接入、大功率用电设备的开启与断开、雷击闪电等都会使空间电场和磁场产生有序或无序的变化,这些都是干扰源(或噪声源)。这些源产生的电磁波或尖峰脉冲通过磁、电耦合或是通过电源线等路径进入放大电路,各种电气设备,形成各种形式的干扰。
所谓高斯噪声是指它的
概率密度函数服从
高斯分布(即
正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的
功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为
常数,是指先后信号在时间上的相关性。
高斯白噪声包括
热噪声和
散粒噪声。在通信信道测试和建模中,高斯噪声被用作加性白噪声以产生
加性白高斯噪声。
在电信和计算机网络中,通信信道可能受到来自许多自然源的宽带高斯噪声的影响,例如导体中的原子的热振动(称为热噪声或约翰逊 - 奈奎斯特噪声),散粒噪声,来自地球和其他温暖的物体,以及来自太阳等天体。
高斯分布,也称正态分布,又称常态分布,记为N(μ,σ^2),其中μ,σ^2为分布的参数,分别为高斯分布的期望和方差。当有确定值时,p(x)也就确定了,特别当μ=0,σ^2=1时,X的分布为
标准正态分布。
在数字图像中的高斯噪声的主要来源出现在采集期间。 由于不良照明和/或高温引起的传感器噪声。在数字图像处理中,可以使用空间滤波器来降低高斯噪声,但是当对图像进行平滑时,结果可能导致精细缩放的图像边缘和细节的模糊,因为它们也对应于被阻挡的高频。 用于噪声去除的常规空间滤波技术包括:平均(
卷积)滤波,中值滤波和高斯平滑。