高压均质腔
高压微射流容腔
高压均质腔,又称高压微射流容腔,是高压均质机的核心部件。其内部具有特殊的几何形状,可以使在高压状态下高速流过的物料发生物理、化学、结构性质等变化,达到均质的效果。
原理
高压均质腔主要由增压机构和高压均质腔体构成。由于高压均质腔的内部具有特别设计的几何形状,因此在增压机构的作用下,高压溶液快速的通过均质腔,物料会同时受到高速剪切、高频震荡、空穴现象和对流撞击等机械力作用和相应的热效应,由此引发的机械力化学效应可诱导物料大分子的物理、化学及结构性质发生变化,最终达到均质的效果。
应用
● 制药行业中制备脂肪粒、微乳、脂质体、混悬剂和微胶囊等;
● 生物工程产品的细胞破碎、胞内外物质的提取和均质;
● 食品和饮料工业产品的均质和乳化,提高产品稳定性;
● 化妆品、精细化工等行业产品的均质分散;
导电浆料、电阻浆料的生产和制备。
结构
各种均质腔的内部结构细节上虽然各有不同,但是从基本的结构上可以分为图1所示几种类型:
第一代 碰撞型
A.穴蚀喷嘴型——直接引用了高压切割和航空航天推进技术中的气蚀喷嘴结构,但是由于在超高压的作用下,物料溶液经过孔径很微小的阀心时会产生几倍音速的速度,并与阀心内部结构发生激烈的磨擦与碰撞,因此其使用寿命较短,并伴随有金属微粒残落。
B.碰撞阀体型——通过碰撞阀(Impact valve)和碰撞环(Impactring)结构的引入,降低了局部磨损,延长了均质腔的使用寿命。但是由于其根本原理上还是通过溶液中的物料和高硬度金属(如钨合金)结构碰撞,所以金属微粒的磨损残落问题没有彻底解决。
碰撞型在后期发展中为了避免金属微粒残落和使用寿命较短的问题,在制作喷嘴和阀体时进一步采用了特殊质地的高硬度非金属材料,如钻石,蓝宝石,纳米陶瓷等。新型材料的应用使上述两个问题得到了改善,但同时也增加了加工难度和制造成本。
第二代 对射型
C.Y形交互型——根本的区别在于其应用了对射流的原理。利用特有的Y形结构,使高压溶液中高速运动的物料自相碰撞,大大提高了腔体的使用寿命,并解决了金属微粒残落的问题。
第一代碰撞型均质腔在生产医用注射液时,残落的惰性金属颗粒有可能发生聚集或形成更大颗粒。从病理学角度看,将导致毛细血管血流减少,进而引发人体内组织的机械性损伤,以及引起急性或慢性炎症反应。对射型均质腔的诞生从原理上解决了惰性金属残落的问题。
性能比较
2010年美国食品与药物管理局(FDA)发布公告,在全美召回11批丁酸氯维地平注射用乳剂。召回原因为产品中可能含有惰性金属颗粒物质。如果这些颗粒发生聚集形成更大的颗粒,理论上将导致毛细血管血流减少,进而引发某些组织的机械性损伤,以及引起急性或慢性炎症反应。某些组织血供减少还可能引起脑、肾、肝脏、心脏、肺等器官缺血或功能不全。因此,在医药行业,不推荐使用第一代碰撞型均质腔。业界常见的碰撞型均质腔有APV,Niro, Avestin等早期产品和绝大多数国产机型,这些机型已不适合进行注射用乳剂的大规模生产。
尽管第二代均质腔在使用寿命和防止金属颗粒残落的问题上具有一定优势,但是和第一代均质腔对比也同样有它的不足之处。详情见表1:
所以在均质腔的选择上应当根据不同使用条件来进行,具体方法可参考表2:
发展方向
有效的降温方式
高压均质腔在均质过程中,高速运动的物料会和均质腔内部结构发生激烈的磨擦与碰撞,在局部产生大量的热积累。过高的温度会对产品的质量造成影响。
医药乳剂制备应用中,脂质注射乳剂中的物料粒径分布(Globule Distribution in Lipid Injectable Emulsions)是衡量乳剂质量与稳定性的重要标准。美国药典UPS729中明确规定了使用light obscurationor light extinction employs single-particleoptical sizing PSS(Particle Sizing Systems)测量系统的Extinction法来测定大粒径物料分布,其中大粒径物料分布越小,乳剂的稳定性则越好。而均质腔内部的局部高温正是形成大粒径物料的主要原因。
传统的降温方式有将整个均质腔浸泡在冷水甚至液氮中,但是由于产生高温的部位位于均质腔内部,加之不流动的浸泡液体热交换性较差,所以往往不能达到期望的效果。
更有效做法是采用流动的冷却液在高压均质腔内部进行实时降温,这样可以有效的带走均质腔内产生的局部热量,从而减少乳剂大颗粒的产生,提高注射乳剂的稳定性。
同时在细胞破壁应用中,实时降温的均质腔能够提高细胞破碎中有效成份的活性和产品的质量。
等效多通道技术
高压对射流均质腔从实验到生产的放大方式是采用多通道的方法,业内可见的多通道均质腔可以到7个通道之多。但这些通道在高压均质的过程中并不是等效的,这就产生均质效果不均一的问题。这个问题还有待业界提出更好的解决方案。
参考资料
High Pressure Homogenization (HPH) .美国田纳西大学UTK.
Recall -- Firm Press Release .FDA美国食品和药物管理局.
最新修订时间:2022-06-18 10:39
目录
概述
原理
应用
参考资料