风机风量的定义为:风速V与风道截面积S的乘积。大型风机由于能够用风速计准确测出风量,所以风量计算也很简单。直接用公式Q=VS,便可算出风量。
简介
通风量
风机数量的确定 根据所选房间的换气次数.计算厂房所需总风量.进而计算得风机数量,计算公式:N=V×n/Q 其中:N--风机数量(台), V--场地体积(m3), n--换气次数(次/时), Q--所选风机型号的单台风量(m3/h)。风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,通风风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的
山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户,如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境。
总推力It
It=△P×At(N)
△ P:各项
阻力之和(Pa);一般应计及下列4项:
1) 隧道进风口阻力与出风口阻力;
2) 隧道表面
摩擦阻力,悬吊
风机装置、支架及路标等引起的阻力;
3) 交通阻力;
4) 隧道进出口之间因温度、气压、风速不同而生的压力差所产生的阻力。
风机布置
根据隧道长度、所需总推力以及射流风机提供推力的范围,初步确定在隧道总长上共布置m组风机,每组n台,每台风机的推力为T。
满足m×n×T≥Tt的总推力要求,同时考虑下列限制条件:
1) n台
风机并列时,其中心线横向间距应大于2倍风机直径;
2) m组(台)风机串列时,纵向间距应大于10倍隧道直径。
参数确定
射流风机的性能以其施加于气流的推力来衡量,风机产生的推力在理论上等于风机进出口气流的动量差(动量等于气流质量流量与流速的乘积),在风机测试条件下,进口气流的动量为零,所以可以计算出在测试条件下,风机的理论推力:
理论推力=p×Q×V=pQ2/A(N)
试验台架量测
推力T1一般为理论推力的0.85-1.05倍.取决于流场分布与风机内部及消声器的结构,风机性能参数图表中所给出的风机推力数据均以试验台架量测推力为准,但量测推力还不等于风机装在隧道内所能产生的
可用推力T,这是因为风机吊装在隧道中时会受到隧道中气流速度产生的卸荷作用的影响(柯达恩效应),可用推力减少,影响的程度
可用系数K1和K2来表示和计算:
T=T1×K1×K2或T1=T/(K1×K2)
T1:试验台架量测推力(N);
K1:隧道中平均气流速度以及
风机出口风速对风机推力的影响系数;
K2:风机轴流离隧道壁之间距离的影响系数。
使用分析
仓库通风
首先,看仓储货品是否是易燃易爆货品,如:油漆仓库等,必须选择防爆系列
风机。
其次,看噪声要求高低,可以选择
屋顶风机或环保式
离心风机,(而且有款屋顶风机是风力启动,更可以省电呢。
最后,看仓库空气所需换气量的大小,可以选择最常规的轴流风机SF型或排风扇FA型。
厨房排风
首先,对于室内直排
油烟的厨房(即排风口在室内墙上),可以根据油烟大小选择SF型轴流
风机或FA型
排气风扇。
其次,对于油烟大,且油烟需要经由长管道,并管道里有打弯处理的厨房,强烈建议使用离心风机(
4-72离心风机最为通用,11-62低噪声环保型离心风机也很实用),这是因为离心风机的压力较轴流风机大,且油烟不经过电机,对电机的保养和换洗更容易。
最后,建议油烟强烈的厨房选用以上两种方案并用,效果更佳。
高档场所
对于酒店、茶坊、咖啡吧、棋牌室、卡拉OK厅等高档场所通风,就不适宜用常规
风机了。
首先,对于小室的通风,使通风管道连接中央通风管的房间,可以在兼顾外观与噪声基础上,选择FZY系列小型轴流风机,它体积小,塑料或铝制外观,低噪声与高风量并存。
其次,对
风量与噪声要求更严格的角度说,
风机箱是最好选择。箱体内部有消音棉,外接中央通风管道后可以达到减噪的显著效果。
最后,补充一下,对于健身房的室内吹风,务必选则大风量的FS型工业电风扇,而非SF型岗位式
轴流风机。这是从外观及安全性方面考虑。
应用问题
一、
鼓风机是污水处理工程中常用的充氧设备,在污水厂风机选型时,风机厂家产品样本上给出的均是标准进气状态下的性能参数,我国规定的风机标准进气状态: 压力p0 =101. 3 kPa ,温度T0 = 20 ℃,相对湿度φ= 50 % ,空气密度ρ= 1.2 kg/ m3 。然而
风机在实际使用中并非标准状态,当鼓风机的环境工况如温度、大气压力以及海拔高度等不同时,风机的性能也将发生变化,设计选型时就不能直接使用产品样本上的性能参数,而需要根据实际使用状态将风机的性能要求,换算成标准进气状态下的风机参数来选型。
二、风机选型中应关注
鼓风机出口压力影响因素的分析容积式鼓风机排气压力的高低并不取决于风机本身,而是取决于气体由鼓风机排出后的装置,即所谓“背压”决定的 ,
曝气鼓风机具有强制输气的特点。鼓风机铭牌上标出的排气压力是风机的额定排气压力。实际上,鼓风机可以在低于额定排气压力的任意压力下工作,并且如果强度和排气温度允许,也可以超过额定排气压力工作。对于污水处理厂而言,排气系统所产生的
绝对压力(背压) 为管路系统的
压力损失值、
曝气池水深和环境大气压力之和。若由于某种原因,如
曝气头或管路堵塞,使管路系统的压力损失增加,“背压”也会升高,于是鼓风机的压力也就相应升高;又若曝气头破裂或管路泄漏等原因,管路系统的压力损失则会减少“, 背压”便不断降低,鼓风机的压力也随之降低。综上所述,确定
曝气鼓风机压力时,只需要
鼓风机在
标准状态下所能达到的绝对压力等于使用状态下的大气压力、曝气池水深和管路损失之和。
三、
风机选型时应关注鼓风机空气流量因素在计算污水处理的需氧量时,其结果为标准状态下所需氧的质量流量qm (kg/ min) ,再将其换算成标准状态下所需空气的容积流量qv1(m3/ min) ,如果鼓风机的使用状态不是标准状态,例如在高原地区使用,则
空气密度、
含湿量会发生变化,
鼓风机所供应的空气容积流量与标准状态是相同的,而所供空气的质量流量将减少,有可能导致供氧量不足。因此,必须计算出能供应相同质量流量的容积流量,即换算流量。在高原地区使用时,环境大气压力也会发生变化,压力比相应升高,那么,
鼓风机的泄漏流量则会增大,这将导致鼓风机所供应的空气容积流量减少,也可能造成供氧量不足。因此,设计时必须考虑使用条件发生变化时各种因素的影响,以保证
风机所供应的实际空气流量能够满足使用要求,并需计算出换算流量和泄漏流量。
四、风机选型应关注鼓风机供气流量的变化规律对于同一台鼓风机,在冬季和夏季,其容积流量是不会发生变化的,但因
空气密度的不同质量流量会发生变化,也就是说供氧量会有所不同。鼓风机在
标准状态与使用状态下的容积流量是不变的,但因为空气密度(ρ) 、
含湿量等发生了变化,导致鼓风机输送至
曝气池的供氧量( FOR) 在冬季温度降低时增加、夏季温度升高时降低。例如,某一污水处理厂,选用上述计算例题中的
罗茨鼓风机,根据环境温度变化, 计算出鼓风机的实际供氧量,其一年的变化规律在实际运行过程中,由于进水量、水质、水温、ML S S 等参数的变化,系统需氧量( SOR) 也会发生变化在夏季,水温较高,曝气池需氧量( SOR) 增大,但鼓风机的供氧量( FOR)在减少,这是设计时考虑需氧量的最不利
工况点,此时,供氧量、需氧量基本相当;在冬季,水温降低,曝气池需氧量( SOR) 减少,但鼓风机的供氧量( FOR) 增大,此时,供氧量较需氧量大出许多。这是由于冬季气温降低,
空气密度增加,那么
风机所供给的干空气的质量流量较标准状态大幅度增加,从而引起供氧量增加,从运行的实际测量情况来看,每年冬季
曝气池的
溶解氧较夏季会高出1~3mg/ L 。因此,在生产运行过程中,需要针对这种变化对设备进行及时的调整,使
鼓风机的充氧能力与实际运行中的需氧量相适应。对于
罗茨鼓风机来说,使用变频器,通过改变风机转速来调整供风量是很经济实用的。不同季节曝气池需氧量( SOR) 、鼓风机供氧量( FOR) 变化规律。
五、结论。综上所述,同一台鼓风机在不同的使用条件下,其性能的变化非常大,所以必须通过严谨的计算进行选型, 否则有可能导致生化系统的供氧不足;另外,在冬季和夏季由于
空气密度发生了变化,鼓风机所供应氧气的质量流量变化很大,冬季供氧量大大超过了需氧量,所以,应采取变频调速等措施使生化系统的溶解氧浓度保持稳定。
风机变频调速器选型
风机在启动时,电流会比额定高5-6倍的,不但会影响风机的使用寿命而且消耗较多的电量。系统在设计时在电机选型上会留有一定的余量,电机的速度是固定不变,但在实际使用过程中,有时要以较低或者较高的速度运行。SAJ变频器可实现电机软启动、补偿功率因素、通过改变设备输入电压频率达到节能调速的目的,而且能给设备提供过流、过压、过载等保护功能。
风机所配电机的选型
P=K*Q*P/1000*3600/η
K:电机储备系数
η:风机效率